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Transcription factors regulate diverse patterns of gene expression by 
binding cooperatively in clusters at gene promoters, enhancers and 
other cis-regulatory modules1–3. Genetic variations at transcription 
factor binding sites have been associated with a wide range of human 
phenotypes4–7. The genome-wide occupancy patterns of transcription 
factors are readily measured by methods such as chromatin immuno-
precipitation followed by sequencing (ChIP-seq)8 that identify regions 
of open chromatin and transcription factor binding9–12. However, 
these techniques are limited by the quality of antibodies and, more-
over, tend to have poor resolution, preventing a detailed analysis 
of binding site occupancy, particularly when the binding sites for 
multiple transcription factors are present in the same cis-regulatory  
module. As a result, very little is known about how the binding of 
multiple transcription factors in proximity influences the activity of 
a cis-regulatory module on gene expression. For example, a funda-
mental question concerning gene regulation is whether heterotypic 
transcription factor binding site clusters constitute a flexible mecha-
nism for fine-tuning robust gene expression, which has been referred 
to as a ‘billboard model’ (refs. 13–15), or specific patterns of spacing, 
combination and order are necessary for enhancer function16,17.

The clustering of degenerate transcription factor binding motifs 
is readily observable in the primary sequence of genomic DNA,  
a fact that has been exploited to predict distal gene enhancers using 
probabilistic18 and machine learning19,20 approaches. Although such 
methods solve the problem of low resolution, they cannot distinguish 

between functional and neutral sites or assess the combinatorial rules 
of cis-regulatory modules. Nevertheless, a common pattern observed 
in these clusters is the homotypic grouping of multiple copies of the 
same motif21, suggesting that multiple copies of the same signal can 
serve to fine-tune gene expression. Consistent with this hypothesis, 
several studies found that the synthetic concatenation of key regula-
tory signals amplified gene expression in reporter assays17,22–24. Such 
studies demonstrate the value of synthetic approaches in identifying 
the basic rules underlying regulatory module organization. However, 
the high cost and low-throughput nature of promoter and enhancer 
assays have thus far prevented any systematic dissection of mamma-
lian regulatory element architecture in vivo.

We report here the findings of a massively parallel reporter assay 
in which the functional activity of 4,970 synthetic regulatory ele-
ment sequences (SRESs), each 168 bp in length, was tested simultane-
ously in mice and in human hepatocellular carcinoma HepG2 cells. 
Methodologically, our approach builds on recent experiments that 
exhaustively tested the effects of mutating every possible base in five 
mammalian enhancers25,26. Our goal here was to systematically test 
the rules of regulatory element organization using synthetic elements. 
We designed a diverse library of SRESs consisting of transcription 
factor binding sites from 12 known liver-specific transcription fac-
tors patterned onto 2 neutral templates. The design comprises three 
classes of elements that test distinct hypotheses regarding the nature 
of homotypic clustering, synergy between transcription factors in  
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heterotypic enhancers and the impact of binding site spacing and 
order on expression (Fig. 1a). Programmable microarrays were 
used to synthesize the pool of SRESs, which were cloned en masse 
into a tagged reporter vector library and assayed in vivo using the 
mouse hydrodynamic tail vein assay27,28 and in vitro by transfection 
into HepG2 cells. Transcribed tags were identified in liver mRNA 
or HepG2 cells 24 h after injection or transfection, respectively, 
by RNA sequencing (RNA-seq) (Fig. 1b). The relative abundance  
of each of the SRESs was determined via a new analysis pipeline  
that achieves very high correlation between biological replicates 
(Online Methods).

RESULTS
Three classes of synthetic regulatory elements
To maximize our ability to make rigorous conclusions about enhancer 
organization, we designed three increasingly complex classes of SRESs. 
Class I SRESs (n = 533) were homotypic, containing 1, 2, 4 or 8 copies 
of the same transcription factor binding site with different spacing.  
Class II SRESs (n = 1,797) were heterotypic but still relatively simple, 
with 2 different types of transcription factor binding sites arranged as 
2, 4 or 8 sites that were separated uniformly. Class III SRESs (n = 2,636) 
were completely heterotypic, with 3–8 types of transcription factor bind-
ing sites separated by a fixed distance with only 1 site per transcription 
factor (Fig. 1a). For all classes, we used consensus binding sequences 
for 12 transcription factors (AHR/ARNT, CEBPA, FOXA1, GATA4, 
HNF1A, HNF4A, NR2F2, ONECUT1, PPARA, RXRA, TFAP2C and 
XBP1) important for liver development and function (Supplementary 
Table 1). All of these sequences are enriched in putative liver-specific 
enhancers9, and 10 of 12 matched those used in other transcription 
factor binding site data sets (Supplementary Table 2). The 12 binding 
sites were patterned onto 2 different inactive 168-bp genomic DNA 
templates (template 1: hg19 chr. 9: 83,712,599–83,712,766; template 2:  
hg19 chr. 2: 211,153,238–211,153,405) (Supplementary Fig. 1a). 
Template 1 constitutes a portion of a randomly selected element from 
the VISTA enhancer browser29 with no enhancer activity, and template 2  
constitutes a portion of a known muscle enhancer that is not active  
in liver cells30.

We took several steps to ensure the confidence of our expression 
measures (Fig. 1c). First, we included in the library two 168-bp nega-
tive controls (hg19 chr. 3: 197,439,137–197,439,304 and hg19 chr. 5:  
172,177,154–172,177,321) independently validated as such by the 
tail vein assay (Supplementary Fig. 1a). Two validated 168-bp posi-
tive controls were also included in the library: a core region of the 
Ltv1 enhancer26 (mm9 chr. 7: 29,161,577–29,161,744), as well as a 
strong liver-specific enhancer (hg19 chr. 19: 35,531,985–35,532,152) 
in the first intron of HPN (encoding hepsin; Supplementary Fig. 1a). 
Second, each SRES was paired with an average of 90 tags (median of  
67 tags), each 20 bp in length, to facilitate accurate quantification and 
to minimize tag sequence–specific biases. Finally, we injected the SRES 
library into three mice to assess reproducibility and verified for each 
SRES that the aggregate luciferase activity for the library was much 
stronger than for empty vector control (Supplementary Fig. 1b).  
Our original design included 5,838 sequences arranged across the  
2 templates, and nearly all of these were represented by at least 1 tag 
in each replicate liver sample. Using a stringent informatics pipe-
line (Online Methods), we obtained high-quality expression data for 
4,966 SRES, as well as for the 4 controls, corresponding to an average  
of 103,835 individual tags recovered per replicate (Supplementary 
Table 3). Our final expression measure for each SRES, which varied 
between 0 and 1, reflects the ratio between the number of transcribed 
tags and the total number of tags for that SRES in the library. A com-
plete listing of SRESs along with their composition and expression 
data is provided in Supplementary Table 4.

The four control sequences in the SRES library exhibited the same 
expression trends as observed in tail vein assays performed with indi-
vidual plasmids (Supplementary Fig. 1c). We observed high correla-
tion between expression measures from the two templates used for 
patterning (Spearman’s ρ = 0.75, P = 0; Fig. 1d). We identified 123 tran-
scription factor binding site patterns (6%) that resulted in discordant 
expression in the 2 templates (Supplementary Fig. 2a,b). Discordant 
patterns had more binding sites (an average of 6.3 binding sites/pattern 
versus 5.5 binding sites/pattern for concordant patterns), were pre-
dominantly class III sites (75% versus 50% for concordant patterns) 
and were enriched for HNF1A (false discovery rate (FDR)-adjusted  
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Figure 1 Synthetic enhancer sequence design and controls.  
(a) SRESs consist of patterns of 12 consensus binding  
sequences arranged homotypically (class I) or heterotypically  
(class II and class III) on 1 of 2 neutral, 168-bp templates.  
(b) Schematic of massively parallel reporter assay methodology.  
SRESs were cloned upstream of a minimal promoter in a tagged  
luciferase library and then assayed in vivo using hydrodynamic tail  
vein injection. Livers were dissected 24 h after injection, mRNA  
was generated, and tags were reverse transcribed and sequenced.  
(c) Bimodal distribution of expression values for 4,966 SRESs.  
Expression values were calculated using the equation shown.  
(d) Template-template correlation. Expression values for 2,217 pairs  
of SRESs (not all SRESs had data for both templates owing to quality  
control measures) containing the exact same patterns of consensus binding sequences on 2 separate templates are plotted. The red line is a linear 
regression trace, whereas the dashed line is the diagonal. Template 1, hg19 chr. 9: 83,712,599–83,712,766; template 2, hg19 chr. 2: 211,153,238–
211,153,405. (e) Expression values from the three mice in which the SRES library was tested, exhibiting a very high level of correlation.
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P = 1 × 10−6, Fisher’s exact test) and NR2F2 (P = 0.002) binding sites 
(Supplementary Fig. 2c), which were both strong determinants of 
expression. Together, these data are consistent with the idea that the 
discordance we observed is predominantly due to noise at higher 
expression levels, rather than to some intrinsic difference between 
the templates. As a result, we considered data from both templates 
for all further analyses.

We also observed strong correlation between the expression mea-
sures from the three mouse samples used in the assay (Spearman’s  
ρ = 0.88–0.89, P = 0; Fig. 1e), demonstrating the reproducibility of 
our results. To ascertain the robustness of SRES architecture in dif-
ferent liver cell types, we also transfected the library into HepG2 cells  
(a human hepatocellular carcinoma line) and processed tag sequenc-
ing data using the same pipeline. As with mouse liver, we observed 
strong correlation between replicates (Spearman’s ρ = 0.79–0.84), 
good template correlation (Spearman’s ρ = 0.69) and trends in the 
complexity of transcription factor binding sites (Supplementary  
Fig. 3a–c). Moreover, we observed strong agreement between SRES-
driven expression in the mouse liver and HepG2 cells (Spearman’s  
ρ = 0.81) across the entire data set (Supplementary Fig. 3d).

Homotypic amplification is compatible with a subset of sites
Several studies have reported that the concatenation of functional 
sequences containing transcription factor binding sites can lead to 
stronger expression of a reporter gene17,22,23. Using class I SRESs, 
we addressed the universality of this principle for each of the 12 
transcription factor binding sites. For five binding sites (CEBPA, 
FOXA1, HNF1A, ONECUT1 and XBP1 transcription factors), we 
observed a significant correlation (Spearman’s ρ = 0.32, P = 1 × 10−18) 
between expression and binding site copy number (Fig. 2a). Of these 
binding sites, the one for HNF1A produced the strongest effect on 
expression (Spearman’s ρ = 0.68), which seemed to be saturated  
beyond four copies of the binding site. For example, clusters of  
4 HNF1A binding sites resulted on average in 1.9-fold higher expres-
sion than clusters with 2 binding sites, whereas SRESs containing  
8 binding sites resulted in only a 1.2-fold increase in expression rela-
tive to SRESs containing 4 binding sites. This finding suggests that 
some sites were rendered non-functional by crowding or that a bio-
chemical saturation mechanism might exist. For the remaining seven 
transcription factors, no homotypic clustering effects were observed. 

Several of these transcription factors (for example, PPARA, RXRA and 
TFAP2C) are known to function in heterodimeric complexes31,32 and 
probably require additional cofactors or sequences to drive expres-
sion, as we later observed for heterotypic SRESs.

In addition to systematically testing the role of transcription factor 
binding site copy number, class I SRESs have a wide range of spacing 
between binding sites. To determine whether the expression driven 
by homotypic clusters was dependent on the spacing of transcrip-
tion factor binding sites, we examined class I SRESs containing 2 or 
4 copies of each of the 12 liver-specific binding sites. For 11 of 12 
binding sites, we observed no significant correlation between binding 
site spacing and expression (Spearman’s correlation P > 0.05) (Fig. 2b  
and Supplementary Figs. 4 and 5). The binding site for NR2F2 
was the only exception, showing slightly stronger expression with  
increasing distance between copies of the binding site in two- and 
four-site SRESs.

Enhancer predictions defined by low-resolution methods such 
as ChIP-seq tend to be quite long (often >1 kb). However, many 
enhancers have shorter, core elements26 (as short as 44 bp33) that are 
sufficient to drive tissue-specific expression in vivo. We decided to 
investigate how many copies of each transcription factor binding site 
were required to yield reproducible expression. Because each of the 
SRESs was cloned upstream of a 31-bp minimal promoter element 
containing a TATA box that could recruit transcriptional complexes, 
it is conceivable that the impact of a single transcription factor bind-
ing site could be detected. SRESs with the same number and type of 
binding sites were grouped for this comparison to reduce the impact 
of potential novel motifs created by the positioning of sequences on 
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Figure 2 Homotypic amplification of expression is compatible with a 
subset of transcription factor binding sites, independent of their spacing. 
(a) We observed significant correlation between expression and the size 
of the homotypic cluster for 5 of the 12 transcription factor binding sites 
(CEBPA, FOXA1, HNF1A, ONECUT1 and XBP1). The PPARA binding 
site is included as an example of a site that could not be homotypically 
amplified. Included on the right are box plots for the background 
expression of all SRESs with a single binding site (B), as well as for 
the positive (+) and negative (−) controls. Red boxes denote groups of 
SRESs with significantly higher expression compared to background 
(Wilcoxon  rank-sum test P ≤ 0.05), which is a slightly more stringent test 
than comparison against negative controls. P values refer to Spearman’s 
correlation coefficients (corrected for multiple testing using FDR). In the 
box plots, the central rectangle spans the first and third quartiles, the line 
inside the rectangle is the median, and the lines beyond the box indicate 
the locations of the minimum and maximum values. (b) In the vast 
majority of cases, the strength of expression was not dependent on the 
distance between binding sites, as observed for class I elements. Shown 
are examples of SRESs, each with two copies of one of the three strongest 
transcription factor binding sites, including sites for CEBPA, HNF1A 
and XBP1. P values refer to Spearman’s correlation coefficients, and the 
dashed gray lines are the regression traces.
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the templates. We compared the expression driven by all 48 groups 
of homotypic SRESs (12 transcription factor binding sites with 1, 2, 
4 and 8 sites per SRES) against a background group of all SRESs with 
only 1 site. Unexpectedly, we found that a single copy of the 17-bp 
HNF1A (FDR-adjusted P = 0.006, Wilcoxon rank-sum test) or XBP1 
(P = 0.002) consensus sequence produced significant levels of expres-
sion. In contrast, two CEBPA sites (P = 1 × 10−5), four FOXA1 sites 
(P = 0.002) and eight ONECUT1 sites (P = 0.0002) were necessary 
to achieve significant levels of expression. Together, these findings 
demonstrate that consistent expression can be derived from a small 
number of transcription factor binding sites.

Increased binding site complexity leads to stronger expression
Homotypic clusters of transcription factor binding sites are observed 
throughout vertebrate genomes21 and are often sufficient to drive robust 
expression in reporter assays17,22,23. We were interested in the impact 
of regulatory element heterogeneity on gene expression. In general, we 
observed the strongest expression from completely heterotypic class III  
SRESs, lower levels of expression from simple heterotypic class II 
SRESs (with sites for two transcription factors) and the lowest expres-
sion from homotypic class I SRESs (Fig. 3a), even when controlling 
for the number of patterned sites (Fig. 3b). Compared to negative con-
trols (mean expression = 0.055), 198 (37%) class I SRESs, 1,116 (62%)  
class II SRESs and 2,229 (85%) class III SRESs resulted in significantly 
higher levels of expression (P < 0.05, Wilcoxon rank-sum test). The 
mean expression of the top 10% of class I SRESs was 0.32, whereas 
mean expression was 0.50 for class II SRESs and 0.59 for class III 
SRESs. Together, these results suggest that synergy in heterotypic 
clusters has a role in driving higher levels of expression compared 
with homotypic clusters. These trends were identical in HepG2 cells 
(Supplementary Fig. 3b).

Strong reporter expression favors specific motif combinations
Although heterotypic SRESs on average resulted in stronger expres-
sion than homotypic ones, there was still considerable variability in 
expression driven by heterotypic SRESs. This variability suggests 
that specific configurations of the same transcription factor bind-
ing sites that lead to stronger or weaker expression could exist. To 
identify factors resulting in favorable and unfavorable configurations 

for expression, we modeled the expression of class I and II SRESs as 
a function of the number and type of transcription factor binding 
sites, including a synergy term for all pairs of transcription factors in 
the sequence (Online Methods), with the model independent of the 
positioning of binding sites. The model was trained using class I and II  
data, and terms were exhaustively removed to minimize the Akaike 
information criterion34 (AIC) and to avoid overfitting. To further 
address the possibility of overfitting, we evaluated the model using 
10-fold cross-validation on the entire set of 2,330 class I and II SRESs 
(Supplementary Fig. 6a) as well as on a non-redundant set of 234 
unique transcription factor binding site combinations. In both cases, 
the estimate of the standard error of the model on the test data was 
negligible. In the same setting, we examined the ability of the model 
to distinguish between active and inactive SRESs (Online Methods) 
by computing the area under the receiver operating characteristic 
(ROC) curve (AUC), obtaining values of 0.78 and 0.84, respectively 
(Supplementary Fig. 6b,c). These values indicate that the model can 
accurately describe the activity of the SRESs using information on the 
composition of transcription factor binding sites.

Transcription factor binding sites that drove strong expression in 
class I SRESs were also significant contributors in our combinatorial 
model (Supplementary Fig. 7). We also observed a significant role 
for the RXRA binding site (P = 0.03, Wald χ2 test) and found that 
increasing copy number of the AHR/ARNT binding site negatively 
affected expression (P = 0.006).

By examining cooperative terms in the model that made significant 
contributions to expression, we identified four transcription factor  
binding site interactions (FOXA1-NR2F2, NR2F2-ONECUT1, 
NR2F2-XBP1 and RXRA-XBP1) (Fig. 4a). Particularly notable in 
this set was the binding site for NR2F2 (also known as COUP-TFII),  
which did not affect expression when additional copies were present 
(P = 0.64, Wald χ2 test) but cooperated with the FOXA1 (P = 0.006), 
ONECUT1 (P = 0.02) and XBP1 (P = 0.04) binding sites. We also 
observed highly significant interference between the HNF1A and 
XBP1 binding sites (P = 0.0002, Wald χ2 test), suggesting that the 
transcription factors that recognize these sites may compete for  
cofactors to drive different modes of transcription.

Finally, we speculated that synergy and interference between fac-
tors could manifest as sequences with specific densities of transcrip-
tion factor binding sites but not appear as overall trends. Therefore,  
we also looked at these interactions using direct comparisons between 
binding site pairs for different densities of binding sites (2, 4 or 8 sites 
per SRES). We employed a stringent test for synergy that compares the 
expression driven by a heterotypic combination of two transcription 
factor binding sites to that resulting from equally sized homotypic 
clusters of both binding sites. By comparing data from homotypic and 
heterotypic SRESs from class I and II in such a manner (independent of 
binding site spacing and order), we identified three additional coopera-
tive interactions of binding sites (FOXA1-PPARA, FOXA1-RXRA and 
RXRA-TFAP2C; P < 0.05, Wilcoxon rank-sum test) (Fig. 4b). Together 
with the interactions predicted by the model itself, these two methods 
provide a map of eight combinatorial interactions (Fig. 4a).

Synthetic elements mimic putative liver enhancers
Because our library design was completely synthetic, we wanted to 
see whether the regulatory architecture we inferred from it is relevant 
to native genomic regulatory elements. We examined a collection of 
51,850 putative mouse liver enhancers identified by ChIP-seq experi-
ments9 and employed the same 12 position weight matrixes (PWMs) 
used to derive consensus binding sequences in our SRES library to 
map potential transcription factor binding sites in them. In general, 
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these PWMs were enriched within a ~600-bp window centered on 
the peak position of putative liver enhancers but not in cerebellar 
enhancers9, which served as a control (Supplementary Fig. 8). We 
categorized 40,617 (78%) of these putative enhancers into 1 of the 3 
classes of SRESs on the basis of transcription factor binding site het-
erogeneity (Fig. 5a), demonstrating that our library segments exhib-
ited similarity to native configurations of binding sites.

To determine whether the combinatorial interactions that we identi-
fied in the SRES library (Fig. 4a) were also found and enriched in the 
mouse genome, we analyzed occurrences of each of the eight interaction 
pairs in putative liver enhancers. All seven cooperative interactions that 
we identified were significantly enriched in these regions compared 
to GC- and length-matched random genomic controls (FDR-adjusted  
P < 1 × 10−17, Fisher’s exact test) (Fig. 5b and Supplementary Fig. 9). 
We also identified a statistically significant enrichment of pairs of bind-
ing sites for HNF1A and XBP1 (P = 2 × 10−28), contrary to our expecta-
tions based on the model. However, these pairings were extremely rare, 
occurring in only 205 (0.4%) of putative liver enhancers.

Reporter expression is influenced by binding site order
Class III SRESs had only one copy of each transcription factor binding 
site separated by a fixed 3-bp spacer. These sequences thus represent 

the ideal data set to determine whether the order of these binding 
sites affects the strength of expression. Owing to limitations on 
library complexity, we restricted the number of transcription factor  
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comparisons between the eight pairs of interacting binding sites and predicted expression based on class I data alone (black lines). Five interactions 
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SRES classes on the basis of the distribution of the 12 transcription factor 
binding sites. (b) Frequencies of transcription factor binding site pairs for 
each of the 8 interactions identified in Figure 4 in putative mouse liver 
enhancers versus 103,700 matched random genomic controls.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1026  VOLUME 45 | NUMBER 9 | SEPTEMBER 2013 Nature GeNetics

A rt i c l e s

binding sites to 9 (eliminating those for 
CEBPA, GATA4 and TFAP2C) and sampled 
2,636 of 623,448 possible permutations of 
3–8 binding sites. We identified 211 sets of  
class III SRESs containing at least 2 permu-
tations of exactly the same binding sites in 
different orders (Supplementary Table 5). 
Of these, 87 (41%) had a favorable permuta-
tion that resulted in a significantly stronger 
increase in expression than an unfavorable 
permutation (FDR < 0.05, Wilcoxon signed-
rank test). Favorable permutations produced, 
on average, 2.8-fold higher expression than unfavorable ones, with 
some pairs varying by as much as 6.8-fold. These results imply that the 
relative position of a transcription factor binding site in a cluster can 
frequently influence expression, perhaps by changing DNA secondary 
structure and/or altering the affinity of binding sites for cofactors. 
The binding site most sensitive to changes in position was that for 
NR2F2, appearing in most sets with a favorable configuration (64/87, 
74%), despite being the sixth (out of 9) most prevalent binding site in 
the 211 class III sets overall (Supplementary Fig. 10). For example,  
we observed that, in SRESs with 3 transcription factor binding sites, 
permutations with an NR2F2 site in the center position yielded  
2.2-fold higher expression than permutations with a promoter- 
proximal NR2F2 site (Fig. 6a).

Our class III design also contained 441 SRESs with 8 transcrip-
tion factor binding sites arranged in different orders, with all other 
variables kept constant. The 441 SRESs were divided into 9 sets on 
the basis of the 8 binding sites they contained, and, on average, they 
contained 49 distinct permutations. For each of these sets, the strong-
est permutation resulted in significantly higher expression than the 
weakest permutation (P = 0.002–0.01, Wilcoxon rank-sum test), with 
an average of 5.3-fold difference in expression. Although the best 
permutations ranked among some of the strongest sequences in the 
entire library (average expression = 0.58), the weakest configurations 
(average expression = 0.11) were on par with SRESs with one tran-
scription factor binding site (average expression = 0.08). These results 
clearly indicate that the correct ordering of binding sites is important 
for proper expression. However, a rank-value plot of the entire set  
of configurations suggests that this relationship is more nuanced  
(Fig. 6b), consistent with a previous analysis of native transcrip-
tion factor binding35. In each of the nine cases, there was a gradual 
response to changes in order: for example, the tenth best permutation 

was, on average, 78% as robust in driving expression as the strong-
est one. These trends were also consistent in HepG2 cells, further  
demonstrating that successful configurations can be detected by con-
served transcriptional complexes (Fig. 6c). We interpret this observa-
tion to suggest that order is important but still highly accommodating 
of different permutations, largely consistent with the billboard model 
of regulatory element organization13,14, and is permissive of evolu-
tionary reshuffling of transcription factor binding sites.

DISCUSSION
Using a collection of 4,970 tagged reporters patterned with different 
transcription factor binding site arrangements for 12 liver-specific 
transcription factors, we demonstrate several principles describing 
the activity of higher vertebrate regulatory elements. First, we show 
that homotypic clustering of some binding sites (CEBPA, FOXA1, 
HNF1A, ONECUT1 and XBP1) can be used to amplify enhancer 
strength. However, this principle is not universal, as homotypic 
clustering of several binding sites (AHR/ARNT, GATA4, HNF4A, 
NR2F2, PPARA, RXRA and TFAP2C) did not amplify expression. 
Not unexpectedly, several of the factors that did not drive expres-
sion in homotypic clusters are known to function in heterodimeric 
complexes31,32. We further show that two different 17-bp consensus 
binding motifs are sufficient to drive consistent expression in adult 
liver when paired with a minimal promoter. To our knowledge, these 
constitute the shortest functional elements characterized in vivo. We 
also observed that the homotypic amplification effect is prone to satu-
ration (for example, with HNF1A binding sites) and, for almost all 
of the elements tested here, does not seem to be dependent on the 
spacing of binding sites. We additionally show that heterotypic ele-
ments are in general stronger than homotypic ones, probably owing 
to the presence of specific combinations and orders of binding sites 
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that are important determinants of robust transcription. This finding 
was particularly evident for NR2F2 and FOXA1 binding sites, both of 
which interact with multiple other transcription factor binding sites. 
This observation is consistent with the reported role for FOXA1 as a 
pioneer transcription factor, recruiting other factors instead of driving 
transcription by itself36. Finally, we demonstrate that the synergistic 
and interfering interactions we identified are, respectively, enriched 
and depleted from putative mouse liver enhancers.

We were not able to exhaustively test transcription factor binding 
site permutations on the scale seen for native regulatory elements 
owing to limitations in library complexity, motivating our selection 
of a single consensus binding sequence per transcription factor. This 
approach proved problematic for HNF4A, a known master regulator 
of liver-specific gene expression37. The consensus sequence selected 
for this transcription factor did not drive transcription in homotypic 
elements and did not contribute to our model of heterotypic expres-
sion, suggesting that a different representative motif might have had 
stronger activity in adult mouse liver. Indeed, in vitro binding data 
suggest that HNF4A binding specificity segregates into two distinct 
groups of sequences38; however, the biological consequence of this 
observation is unknown. Future massively parallel reporter assay 
studies with increased binding site complexity will allow the system-
atic testing of binding site degeneracy. We also observed negligible 
activity from the consensus binding site used for GATA4, although 
this weak activity is likely due to a more developmental role for this 
factor. GATA4 is essential for the early development of the liver 
from the ventral foregut endoderm39 but is expressed at low levels 
in the adult liver and is limited to epithelial cells around the biliary 
ducts40. Another caveat of our approach is that our SRESs were only 
168 bp in length, which is on the scale of a core promoter element 
or p300 ChIP-seq peak but much shorter than most functionally 
validated elements (which are 1.5–2 kb in length29). As a result, our 
analysis is unable to assay regulatory structures that might be present 
on a sparser scale. Methodological improvements such as long- 
module synthesis on DNA microarrays, polymerase cycling assembly 
(PCA)26,41 or in vitro recombination41,42 could be used to test larger 
elements. A final limitation is that the plasmids containing SRESs 
do not integrate into the host genome and are not chromatinized. 
These results should therefore be interpreted in the context of other  
plasmid-based reporter assays. The development of viral, transposon 
or recombination-based massively parallel reporter assay methods 
that permit reporter integration will no doubt help tease apart addi-
tional features of regulatory organization.

A large subset of the SRES library is devoted to determining the 
impact of transcription factor binding site order on expression by het-
erotypic elements. Of these sets, 41% had a favorable permutation that 
resulted in a significantly stronger increase in expression than a sec-
ondary unfavorable permutation, suggesting a key role for binding site 
order in driving optimal transcription. This percentage is particularly 
notable considering that the median number of permutations tested 
was only two, suggesting that, in many cases, we simply did not test a 
strong permutation. To look at the impact of binding site order more 
systematically, we examined the expression patterns of 441 SRESs with 
8 transcription factor binding sites arranged in different permutations. 
These patterns conclusively show that there are multiple arrangements 
that drive strong expression but several weak ones as well. These data 
are consistent with the notion that there may be no generalized motif-
positioning model3,15. Instead, the data support a flexible regulatory 
architecture for the organization of cis-regulatory modules—a loosely 
organized billboard13,14. An important caveat to this interpretation 
is that, by analyzing the role of our SRES library in adult liver cells, 

we may have missed developmental and/or environment-sensitive 
aspects of the regulatory architecture of transcription factor binding 
sites. Future studies using massively parallel reporter assay libraries at 
different time points and under different conditions might be able to 
address this question more fully.

URL. All analyses were performed using the R statistical software 
package, http://www.r-project.org/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession code. All raw data, including SRES-tag association and tag 
abundance data, have been deposited in the Sequence Read Archive 
(SRA) under accession SRP018414.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Consensus sequences. In cases where the motif databases contained multiple 
PWMs representing the binding site of a single transcription factor, we first 
determined the number of hits for each PWM on a random 10-Mb human 
sequence and then selected the PWM resulting in the median number of hits. 
Hits were determined by running the tool tfSearch43 with default parameters. 
For each PWM, we calculated the consensus sequence on the basis of the 
log-odds matrix. Such a log-odds matrix was generated by calculating log2 
(pi/fi) at each position of the matrix, where pi is the probability of a particular 
nucleotide i at that position in the matrix and fi is the average frequency of that 
nucleotide in the genome. Average frequencies were calculated on a random 
10-Mb human sequence. In the event of a tie between two bases, we chose 
one at random. All of our selected sequences were also tested for enrichment 
in putative mouse liver enhancers9 and matches in other transcription factor 
binding data sets (Supplementary Table 2).

Library synthesis and cloning. Two neutral 168-bp DNA templates were 
selected on the basis of a low score in a liver classification model (data not 
shown) and were validated using the tail vein injection assay (Supplementary 
Fig. 1). SRESs were ordered as 200-nt oligonucleotides (Custom Array), 
including a 168-nt variable sequence flanked on either side by 16 nt of con-
stant sequence to enable amplification of the oligonucleotide library by PCR. 
Sequences were prescreened for XbaI or HindIII restriction enzyme sites. 
The oligonucleotide library was amplified using primers (OLIGO_AMP_F 
and OLIGO_AMP_R) that targeted the constant flanking sequences and also 
introduced 15 bp of sequence homology with the vector to make the ampli-
fied product competent for downstream cloning. The amplified library was 
run on a PAGE gel, and the 240-bp band was excised and transferred to a 
siliconized 0.5-ml microcentrifuge tube (Ambion) with a hole in the bottom 
introduced through puncture by a 20-gauge needle. This tube was placed in a 
1.5-ml siliconized microcentrifuge tube (Ambion) and centrifuged in a tab-
letop microcentrifuge at 16,110g for 5 min to create a gel slurry that was then 
resuspended in 200 µl of 1× Tris-EDTA and incubated at 65 °C for 2 h with 
periodic vortexing. The aqueous phase was separated from gel fragments by 
centrifugation through 0.2-µm NanoSep columns (Pall Life Sciences). DNA 
was recovered by standard QIAquick column purification and was subjected 
to an additional round of amplification using short outer primers (SS_F and 
SS_R). The SRES library was cloned into the EcoRV site of a tagged pGL4.23 
library described previously26, using the standard InFusion (Clontech) pro-
tocol and Stellar competent cells (Clontech). Seven transformations were 
performed, and bacteria were grown overnight in two 50-ml liquid cultures 
(3.5 transformations per culture) at 37 °C in a shaking incubator. DNA was 
extracted using the Invitrogen ChargeSwitch Midi Prep kit. A complete listing 
of all primer sequences used is provided in Supplementary Table 6.

Tail vein injections. Templates and control sequences were validated individu-
ally using previously described methods27. The SRES library was injected using 
essentially the same methods, with the exception that RNA was collected from 
dissected livers. Briefly, 10 µg of plasmid or SRES library diluted in TransIT 
EE Hydrodynamic Gene Delivery System (Mirus Bio) was injected into 
three male CD1 mice weighing between 20 and 24 g and 13–18 weeks of age  
(Charles River) following the manufacturer’s protocol. To measure the aggre-
gate injection efficiency of the SRES library, an additional three mice were 
injected with the library along with 2 µg of pGL4.74 (hRluc/TK) (Promega) 
to correct for differences in injection efficiency. After 24 h, mice were  
sacrificed, and livers were dissected. Total RNA was purified using the RNeasy 
Maxi kit (Qiagen) with on-column DNase digestion, and 500 µg was used as 
input for the Oligotex mRNA Midi kit (Qiagen), yielding ~3% mRNA. For 
the mice injected with the library and pGL4.74, firefly luciferase and Renilla 
luciferase activities in the supernatant (diluted 1:20) were measured on a 
Synergy 2 microplate reader (BioTek) in technical replicates of four using the  
Dual-Luciferase Reporter Assay System (Promega). All animal work was 
approved by the UCSF Institutional Animal Care and Use Committee. No 
statistical method was used to predetermine sample size.

Cell culture. HepG2 cells (ATCC) were maintained in DMEM supplemented 
with 10% FCS, glutamine (2 mM), penicillin (100 U/ml) and streptomycin  

(50 µg/ml). HepG2 cells (5 × 106) were plated in 15-cm plates and incubated 
for 24 h. Cells were transfected with 15 µg of DNA using X-tremeGENE HP 
(Roche) according to the manufacturer’s protocol. The X-tremeGENE:DNA 
ratio was 2:1. Three independent replicate cultures were transfected with the 
SRES library and sequenced.

Sequencing of RNA-derived tags. We identified 20-bp tags in liver and HepG2 
cell mRNA using previously described methods26. For livers, four RT-PCR 
runs were performed for each of the three biological replicates and were then 
multiplexed and sequenced together on a single lane of an Illumina Genome 
Analyzer IIx using a custom sequencing primer (TAG_SEQ_F). For HepG2 
cells, two RT-PCR runs were performed for each replicate and sequenced. Each 
run was 36 cycles, with an additional 6 cycles to read the indexing tag using 
the index sequencing primer (TAG_SEQ_INDEX). For each aliquot, reads 
were filtered on the basis of the quality scores for the first 20 bases, which 
correspond to the degenerate tag. The number of occurrences of each tag were 
counted, and tags whose occurrence was supported by at least two reads were 
classified as being present in that aliquot.

Associating SRESs with tags. SRESs were associated with tags ostensibly as 
previously described26. Briefly, ~1,000-bp segments separating SRESs and 
tags on the pGL4.23 plasmid were excised by digesting with HindIII, which 
digests both 3′ of the SRES and 5′ of the tag. The digested plasmid was purified 
and recircularized using intramolecular ligation, resulting in the tag being 
adjacent to the 3′ end of the SRES. The region spanning the SRES and tag 
was amplified from recircularized plasmids by PCR with the forward primer 
targeting the region immediately 5′ of the SRES (SRES_PE_F) and the reverse 
primer targeting the region immediately 3′ of the tag (TAG_PE_R). PCR prod-
ucts were purified using QIAquick columns and sequenced on a HiSeq 2000 
(Illumina). Forward and reverse reads (sequenced using custom sequencing 
primers SRES_SEQ_F and SRES_SEQ_R, respectively) covered 101 bp of each 
side of the SRES, and the index read covered the 20-bp tag sequence (index 
read sequencing primer TAG_SEQ_F). Read pairs where all bases had a Phred 
score of >25 were aligned to the SRES library with Burrows-Wheeler Aligner 
(BWA)44 (version 0.6.2; using default options). Each sequence in the SRES 
library was aligned with an average of 2,213 reads. Each tag was associated with 
an average of nine reads. We uniquely mapped each tag to the sequence aligned 
with the highest number of reads associated with that tag. We discarded the 
tag in the event of a tie or if it was mapped to a sequence aligned with less than 
two reads. Finally, we discarded sequences associated with fewer than ten tags. 
Further detail is provided in the Supplementary Note.

Expression measure. Read counts associated with each tag and sequence in 
the SRES library were quantile normalized across the 12 RT-PCR pools (all 3 
mouse replicates) and then normalized again within each replicate. For HepG2 
cells, read counts were quantile normalized between the two RT-PCR pools 
for a single replicate. A tag was considered expressed if it was represented by 
at least two (normalized) reads in a single pool. For each sequence in the SRES 
library, the expression value was given by the fraction of the tags in the library 
that were expressed in that sample. P values from Spearman’s correlations and 
Wilcoxon rank-sum tests were corrected using the Benjamini-Hochberg FDR 
method45 in cases where there were multiple comparisons.

Template correlation. Discordance between expression data for templates was 
measured using Cook’s distance (D)46. This value measures the influence of 
each SRES pattern in the regression model describing the relationship between 
expression on template 1 and expression on template 2. We considered 123 
SRESs to be discordant between the templates because they had 

D
n k

>
− −
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1

where n is the number of SRES template pairs (2,217) and k is the number of 
independent variables (1).

Quantitative SRES expression modeling. We modeled the expression of all 
class I and II SRESs (in triplicate, constituting 6,990 data points) as a function 
of the transcription factor binding site they comprise using generalized linear 
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models (GLMs). A GLM consists of three components: (i) the random compo-
nent, which consists of the response variable Y and its probability distribution; 
(ii) the systematic component, which represents the predictor variables in the 
model X1, X2, …, X12; and (iii) the link function, which links the expected value 
of Y and the predictor variables. In our case, the response variable was the 
observed expression value of a sequence, and the predictor variables indicated 
the number of occurrences in the sequence of each of the 12 transcription fac-
tor binding sites considered. Given that the expression values are distributed 
between 0 and 1, we used a GLM with binomial family and a logit link 

ˆ (î) logi g
y

y
=

−1

and 

ˆ (ˆ) ˆ ˆ ˆ ...i g i a a X a X a X X

a X X a X

= + × + × + + × ×
+ × × + × ×

0 1 1 2 2 1 1 1

2 2 2 1 1



  XX a X X2 66 11 12+ + × ×... 

where g(î ) is the link function and ̂ ˆ , ˆ ,..., , ,..., , ,...i a a a a a a0 1 1 2 1 2     are the parameters 
to be estimated. This approach is similar to a standard logistic regression18 but 
differs in that GLMs can accept observed values of 0% and 100% and take into 
consideration the sample size when estimating the coefficients and their errors. 
In each case, we started from a complete model with all variables included 
with linear and quadratic powers, as well as all possible interactions between 
linear terms. We then applied a stepwise procedure, optimizing the models 
by taking into consideration the AIC. The AIC is based on the goodness of fit, 
but it is penalized by the number of estimated parameters. Predictor variables 
were successively removed from the starting model according to the deviance 
explained by the predictor variable when fitted individually, with the least 
significant predictor variable being removed first.

For cross-validation, we averaged the expression data for all class I and II  
SRESs, resulting in a total of 2,330 data points. Each of these was designated 
positive or negative on the basis of whether it exceeded the threshold equal 
to the average expression of all one-site SRESs (this value is higher than 

that for the negative controls). Because this data set was highly redundant  
(the same combination of transcription factor binding sites was present  
several times and was associated with different expression values), we per-
formed cross-validation in two different ways. First, we performed a standard 
tenfold cross-validation, training the model on nine-tenths of the data and 
testing it on the remaining one-tenth. Second, we reduced the data set to 234 
unique combinations of transcription factor binding sites, where each combi-
nation was associated with the average expression value of the corresponding 
SRESs. On this data set, we performed a standard tenfold cross-validation, 
training the model on nine-tenths of the data and testing it on the remaining 
one-tenth. To ascertain the stability of the model, we determined the numerical 
values of the model coefficients for each of the cross-validation folds. On the 
basis of coefficient deviation, we concluded that the model produced stable 
coefficients for all transcription factor binding sites. All analyses were carried 
out using the R statistical software package (see URL).

Transcription factor binding site analysis. Putative transcription factor bind-
ing sites were identified by searching the sequences with MAST47 for motifs 
listed in Supplementary Table 1. MAST was run independently on each indivi-
dual sequence with default parameters, using either putative liver or cerebellum  
enhancers from the same source9. Enrichment in putative liver enhancers was 
evaluated in 600-bp windows (±300 bp from the peak center) on the basis of 
the distribution in Supplementary Figure 9. Enrichment was tested in puta-
tive liver enhancers against a background of 103,700 GC- and length-matched 
genomic control regions and was evaluated by Fisher’s exact test.
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