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SUMMARY
Algorithms that accurately predict gene structure fromprimary sequence alonewere transformative for anno-
tating the human genome. Can we also predict the expression levels of genes based solely on genome
sequence? Here, we sought to apply deep convolutional neural networks toward that goal. Surprisingly, a
model that includes only promoter sequences and features associated with mRNA stability explains 59%
and 71% of variation in steady-state mRNA levels in human and mouse, respectively. This model, termed
Xpresso, more than doubles the accuracy of alternative sequence-based models and isolates rules as pre-
dictive as models relying on chromatic immunoprecipitation sequencing (ChIP-seq) data. Xpresso recapitu-
lates genome-wide patterns of transcriptional activity, and its residuals can be used to quantify the influence
of enhancers, heterochromatic domains, and microRNAs. Model interpretation reveals that promoter-prox-
imal CpG dinucleotides strongly predict transcriptional activity. Looking forward, we propose cell-type-spe-
cific gene-expression predictions based solely on primary sequences as a grand challenge for the field.
INTRODUCTION

Cellular function is governed in large part by the repertoire of pro-

teins present and their relative abundances. Initial attempts to

model the gene regulatory forces specifying themammalian pro-

teome posited a major role for translational regulation, implying

that mRNA levels might be more poorly predictive of protein

abundance than is often assumed (Schwanhäusser et al.,

2011). However, subsequent reanalyses of those data have

shown that as much as 84% of variation in protein levels can

be explained by mRNA levels, with transcription rates contrib-

uting 73%, and mRNA degradation rates contributing 11% (Li

et al., 2014). This work reinforces the view that steady-state pro-

tein abundances are highly predictable as a function of mRNA

levels (Vogel et al., 2010).

Although quantitative models that predict protein levels from

mRNA levels are available (Edfors et al., 2016), we lack models

that can accurately predict mRNA levels. Steady-state mRNA

abundance is governed by the rates of transcription and mRNA

decay. For each gene, a multitude of regulatory mechanisms

are carefully integrated to tune these rates and thus specify the

concentrations of the corresponding mRNAs that cells of each

type will produce. Key mechanisms include (1) the recruitment

of an assortment of transcription factors (TFs) to a gene’s pro-

moter region; (2) epigenetic silencing, as frequently demarcated
This is an open access article und
by Polycomb-repressed domains associated with H3K27me3

histonemarks (Cao et al., 2002); (3) the activation of genes by en-

hancers, stretch enhancers (Parker et al., 2013), and super-en-

hancers (Whyte et al., 2013); and (4) the degradation of mRNA

through microRNA-mediated targeting (Agarwal et al., 2015).

Jointly modeling these diverse aspects of gene regulation within

a quantitative framework has the potential to shed light on their

relative importance, to elucidate their mechanistic underpin-

nings, and to uncover new modes of gene regulation.

Previous attempts to model transcription and/or mRNA decay

can be broadly split into those based on correlative biochemical

measurements and those based on primary sequence. In the

former category, there have been several attempts to model

the relationship between TF binding, histonemarks, and/or chro-

matin accessibility and gene expression (e.g., predicting the

expression levels of genes based on chromatin immunoprecipi-

tation sequencing [ChIP-seq] and/or DNase I hypersensitivity

data) (Cheng et al., 2011, 2012; Dong et al., 2012; Karli�c et al.,

2010; McLeay et al., 2012; Ouyang et al., 2009; Schmidt et al.,

2017). Although such models can clarify the relationships be-

tween heterogeneous, experimentally derived biochemical

marks and transcription rates, their ability to deliver mechanistic

insights is limited. For example, for models relying on histone

marks, the temporal deposition of such marks might follow,

rather than precede, the events initiating transcription, in which
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case, the histone marks reinforce or maintain, rather than

specify, a transcriptional program. For models relying on mea-

surements of TF binding, a substantial fraction of ChIP-seq

peaks lack the expected DNA binding motif and potentially

reflect artifactual binding signals originating from the predisposi-

tion of ChIP to pull down highly transcribed regions or regions of

open chromatin (Jain et al., 2015; Krebs et al., 2014; Teytelman

et al., 2013).

In the latter category, there have also been a few attempts to

model transcript levels or mRNA decay rates based solely on pri-

mary sequence. For example, a model of the spatial positioning

of in silico predicted TF binding sites relative to transcriptional

start sites (TSSs) was able to explain 8%–28% of variability in

gene expression (McLeay et al., 2012). Models based on simple

features, including the guanine-cytosine (GC) content and

lengths of different functional regions (e.g., the 50 UTR, open
reading frame [ORF], introns, and 30 UTR) and ORF exon junction

density (Sharova et al., 2009; Spies et al., 2013) explain as much

as 40% of the variability in mRNA half-lives, which are, in turn,

estimated to explain 6%–15% of the variability in steady-state

mRNA levels in mammalian cells (Li et al., 2014; Schwanhäusser

et al., 2011; Spies et al., 2013). However, most variation in

steady-state mRNA levels has yet to be explained by

sequence-based models.

To what extent is gene expression predictable directly from

the genome sequence? Relevant to this question, a study relying

on amassively parallel reporter assay (MPRA) demonstrated that

the transcriptional activities associated with isolated promoters

can explain a majority (�54%) of endogenous promoter activity

(van Arensbergen et al., 2017). This result establishes a clear

mechanistic link between the primary sequence of promoters

and variability in gene expression levels. This, in turn, implies

that there may exist a mathematical function which, if properly

parameterized, could accurately predict mRNA expression

levels based upon nothing more than genomic sequence. How-

ever, it remains unknown whether such a function is ‘‘learnable’’

given limited training data and highly incomplete domain-spe-

cific knowledge of the parameters governing gene regulation

(e.g., biochemical parameters describing the affinity of TFs to

their cognate motifs [Kd], constants describing the rates of TF

binding and unbinding [Kon and Koff, respectively], potential

cooperative effects from the combinatorial binding of TFs (as

measured by Hill coefficients), the distance dependencies be-

tween TF binding relative to the TSS and RNA polymerase II

recruitment, and competition for binding between TFs and his-

tones [Segal and Widom, 2009], etc.).

Methods based upon deep learning are providing unprece-

dented opportunities to automatically learn relationships among

heterogeneous data types in the context of incomplete biological

knowledge (Angermueller et al., 2016). Such methods often

employ deep neural networks; in which, multiple layers are em-

ployed hierarchically to parameterize a model, which transforms

a given input into a specified output. For example, deep convolu-

tional neural networks have been used to predict the binding

preferences of RNA and DNA binding proteins (Alipanahi et al.,

2015), the impact of noncoding variants on the chromatin land-

scape and mRNA levels (Zhou and Troyanskaya, 2015; Zhou

et al., 2018), the chromatin accessibility of a cell type from a
2 Cell Reports 31, 107663, May 19, 2020
DNA sequence (Kelley et al., 2016), and genome-wide epigenetic

measurements of a cell type from aDNA sequence (Kelley, 2019;

Kelley et al., 2018).

The application of deep learning to model the various regula-

tory processes governing gene expression in a unified frame-

work has great potential and could enable the discovery of

fundamental relationships between primary DNA sequence

and steady-state mRNA levels that have, heretofore, remained

elusive. To that end, we introduce Xpresso, a deep convolutional

neural network that jointly models promoter sequences and fea-

tures associated with mRNA stability to predict steady-state

mRNA levels.

RESULTS

An Optimized Deep-Learning Model to Predict mRNA
Expression Levels
We aspired to train a quantitative model using nothing more than

a genomic sequence to predict mRNA expression levels. To

simplify the prediction problem, we first evaluated the correlation

structure of 56 human cell types in which mRNA expression

levels had been collected and normalized by the Roadmap Epi-

genomics Consortium (Roadmap Epigenomics Consortium

et al., 2015). An evaluation of the pairwise Spearman correlations

of mRNA expression levels among cell types revealed that most

cell types were highly correlated, exhibiting an average correla-

tion of�0.78 between any pair of cell types (Figure S1). This justi-

fied the initial development of a cell-type-agnostic model for

predicting median mRNA expression levels. We observed that

median mRNA levels for chrY genes were highly variable

because of the sex chromosome differences among cell types.

Histone mRNAs were also undersampled and measured inaccu-

rately because of the dependency of the underlying RNA

sequencing (RNA-seq) protocols on poly(A)-tails, which histones

lack. We, therefore, excluded chrY and histone genes from our

analyses.

We initialized a search of hyperparameters defining the archi-

tecture of a neural network that could more optimally predict

gene expression levels while jointly modeling both promoter se-

quences and sequence-based features correlated with mRNA

decay (Figure 1A). During this search, we varied several key hy-

perparameters defining the deep neural network (Table 1). The

mRNA decay features, which included the GC content and

lengths of different functional regions (e.g., the 50 UTR, ORF, in-

trons, and 30 UTR) and ORF exon junction density (Sharova et al.,

2009; Spies et al., 2013) were not varied.

We applied two optimization strategies that have shown prom-

ise in the context of hyperparameter searches: the simulated an-

nealing (SA) and the Tree of Parzen estimators (TPE) (Bergstra

et al., 2011). We compared their performance to the best manu-

ally defined deep-learning architecture, which was guided by

prior knowledge that information governing transcription rate is

most likely localized to sequence elements within ±1,500 bp

promoter around a TSS and further inspired by an existing

deep-learning architecture previously used to predict regions

of chromatin accessibility from DNA sequence (Table 1) (Kelley

et al., 2016). We observed that each optimization strategy pro-

gressively discovered better sets of hyperparameters, with the
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Figure 1. Overview of Optimization Strategy for Deep Learning-Based Model Training Scheme

(A) Overview of a predictivemodel ofmRNA steady-state abundance that integrates information from sequences at the promoter region of a gene and annotation-

based sequence features associated with mRNA decay.

(B) Validation error associated with the best model found at each iteration during the search for an optimal set of hyperparameters to predict median mRNA

abundance across tissues.

(C) Performance of 10 independent trials given the optimal architecture discovered in (B). Nine of 10 trials achieve convergence, with the vertical purple dashed

line indicating the best model achieved was at the twelfth epoch, and the horizontal dashed line indicating the best manually discovered model as shown in (B).

(D) Best deep-learning architecture discovered during the hyperparameter search in (B) corresponds to an architecturewith two sequential convolutional andmax

pooling layers followed by two sequential fully connected layers.
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TPE method achieving the best validation mean squared error

(MSE) of 0.401 (Figure 1B).

Given the stochastic nature of training deep-learning models,

we devised a strategy to train 10 independent trials using the

best deep-learning architecture specified by the hyperpara-

meters discovered using the TPE method. We observed that

nine of 10 trials converged to similar MSE values (Figure 1C).

For our final model, we selected the parameters derived from

the specific trial and epoch that minimized the validation MSE.

All the following results of this study report the performance

derived from the best of 10 trained models.

Our final model, which considered the region 7 kb upstream to

3.5 kb downstream of the TSS, was comprised of two sequential

convolutional and max-pooling layers, followed by two fully con-

nected layers preceding the output neuron (Table 1; Figure 1D),

and consisted of 112,485 parameters in total (Figure S2A). An

evaluation of suboptimal hyperparameters suggested this

10.5-kb sequence-window region was not critical for good per-

formance because an alternative model spanning the region

1.5 kb upstream to 7.5 kb downstream of the TSS obtained a

similar validation MSE (Figure S2B). Furthermore, our manually

defined architecture, spanning the region ±1.5 kb of the TSS

achieved an r2 of 0.53, only 6%worse than themodel discovered

by TPE, indicating that a localized region around the core pro-

moter region captured most learnable information, with only a

modest additional contribution gained from the consideration

of surrounding regions.
To evaluate the relationship between the number of genes in

the training set and the performance of the model, we sub-

sampled the training set and evaluated the MSE and r2 on the

validation and test set, respectively. We found that the greatest

gain in performance occurred between 4,000 and 6,000 training

examples (Figure 2A).

Performance of Predictive Models in Human and Mouse
We next sought to compare the generality and performance of

our method across mammalian species. We focused on

18,377 and 21,856 genes in human and mouse, respectively,

for which we could match promoter sequences and gene

expression levels, and held out 1,000 genes in each species as

a test set. The best human model achieved an r2 of 0.59 (Fig-

ure 2B). Although we achieved this result using cap analysis

gene expression (CAGE) data to refine the TSS annotations (Fig-

ure 1C), the use of CAGE was optional because the performance

of the model using only Ensembl TSS annotations was only

modestly worse (r2 of 0.54). Using an identical model architec-

ture and training scheme (Figure 1C), the best mouse model in

the mouse achieved a substantially higher r2 of 0.71 (Figure 2C).

To test whether the regulatory rules learned by each model

could generalize across species, we re-trained human- and

mouse-specific models using training and validation sets that

were matched to have the same group of one-to-one orthologs.

We then tested the performance of these models on a held-out

group of one-to-one orthologs in either the same or opposite
Cell Reports 31, 107663, May 19, 2020 3



Table 1. Search Space and Hyperparameters Discovered

Hyperparameter Range

Step Size

(if Discrete)

Best

Identified

Manually

Best

Identified

from Search

Batch Size 2[5,7] 1 64 128

Upstream

Distance from

TSS

[�10,000, 0] 500 �1,500 �7,000

Downstream

Distance from

TSS

[0, 10000] 500 1,500 3,500

[Convolutional /

Max Pooling]

Layer(s)

[One, Two,

Three, Four]

Two Two

***Number of

convolutional filters

2[4, 7] 1 64/64 128/32

***Convolution

filter length

[1, 10] 1 5/5 6/9

***Convolution

dilation rate

[1, 4] 1 1/1 1/1

***Max pooling

pool size/stride

[5, 100] 5 10/20 30/10

Densely

Connected

Layer(s)

[One, two] One Two

***Number of

Neurons

in Layer

2[1, 8] 1 100 64/2

***Dropout

Probability

[0, 1] 0.5 0.00099/

0.01546

Within brackets, the upper and lower ranges are listed if the variable is

either discrete or continuous, and all possible values are listed if the var-

iable is categorical. If the variable is discrete, the step size is provided.

Beneath each hyperparameter are the associated nested hyperpara-

meters (indicated by ***) that are searched. For example, if three [Convo-

lutional / Max Pooling] layers are selected, each of these three layers

possesses four additional types of hyperparameters to search among.

The values for consecutive layers that were ultimately selected in the final

models are separated by a slash (/).
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species. The models trained on each species achieved similar

performances on the test set of the opposite species as that of

the same species (Figure 2D), demonstrating that the learned

regulatory principles generalize across the mammalian phylog-

eny. The similar r2 values between human and mouse obtained

when restricting the analyses to one-to-one orthologs suggested

that the 12%greater r2 previously observed in themouse relative

to human (Figures 2B and 2C) was due to differences in the dis-

tributions of gene expression levels between the mouse and hu-

man. Indeed, although more than 20% of all mouse genes were

non-expressed (Figure 2E, displayed on the x-axis as �1

because of the addition of a pseudocount of 0.1 before log-

transforming the reads per kilobase of transcript permillionmap-

ped reads [RPKM] values), fewer than 10% of all human genes

were non-expressed. In contrast, the subset of 15,348 one-to-

one orthologs in human and mouse revealed a similar proportion

of non-expressed genes (Figure 2E). To directly test the effect of

these differences, we downsampled the proportion of non-ex-
4 Cell Reports 31, 107663, May 19, 2020
pressed mouse genes to match that of the human and re-trained

amouse-specific model. The r2 decreased only modestly to 0.65

on a held-out test set, suggesting that the differential proportion

of non-expressed genes only partially explains the improved per-

formance in the mouse.

Finally, we were interested in assessing to what extent spe-

cies-specific gene expression differences can be explained by

differences in promoter sequence. Toward that goal, we evalu-

ated the relationship between expression levels and one-to-

one orthologs. We found that the two species showed strikingly

concordant median expression levels, with only a subset of 584

genes enriched by at least 10-fold in one species (Figure 2F). A

binary classifier based upon the difference in predictions from

models trained in each species could discriminate these spe-

cies-specific mRNAs (area under the curve [AUC] = 0.78;

Figure 2G).

Cell-Type-Specific Models Implicate a Diversity of Gene
Regulatory Mechanisms
Given the generality of our deep-learning framework, we next

sought to build cell-type-specific models. With the same hyper-

parameters, we trained new models to predict the expression

levels of all protein-coding genes for humanmyelogenous leuke-

mia cells (K562), human lymphoblastoid cells (GM12878), and

mouse embryonic stem cells (mESCs) (Table S1). To avoid over-

fitting, we developed a nested 10-fold cross-validation-based

procedure to ensure that the prediction for any given gene re-

sulted from its being part of a held-out sample. From the resid-

uals, we investigated whether we could observe the influence

of additional gene regulatory mechanisms that were not initially

considered, or incompletely accounted for, in the Xpresso

model.

We first evaluated K562 cells, finding that our cell-type-spe-

cific predictions correlated with observed K562 expression

levels with an r2 of 0.51 (Figure 3A). We hypothesized that genes

predicted inaccurately might be under the control of gene regu-

latory mechanisms not considered by our model. One likely

mechanism involves enhancers, cis-acting regulatory elements

that may be located hundreds of kilobases away from a TSS.

For example, in K562 cells, distal enhancers have been impli-

cated as modulating the expression of most genes of the

a-globin and b-globin loci, GATA1, MYC, and others (Fulco

et al., 2016; Klann et al., 2017; Xie et al., 2017). Reasoning that

such genes should be consistently underestimated by our pre-

dictions, we plotted the distribution of their residuals (Fig-

ure S3A). Indeed, all of these genes were expressed much

more highly than our predictions in K562 cells, reinforcing the

notion that such genes are activated by regulatory mechanisms

beyond promoters. Among the biggest outliers were the b-globin

genes, which, in some cases, were expressed more than four or-

ders of magnitude more highly than predicted (Figure 3A).

To more systematically identify genes activated or silenced by

non-promoter mechanisms, we developed a method to predict

them genome-wide. Given that enhancers are frequently associ-

ated with large domains of H3K27Ac activity and that silenced

genes are frequently associated with heterochromatic domains

marked by H3K27me3, we examined genome-wide chromatin-

state annotations based upon the hierarchical hidden Markov
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Figure 2. Predictive Models Explain Variability in Gene Expression in the Human and Mouse

(A) Effect of downsampling the training set size on the validation error and performance of the test set. To generate the mean and 95% confidence intervals

displayed, the training set was downsampled (without replacement) into 10 batches. For each batch, the performance for the best of 10 models, defined as the

model with the minimal validation error, was computed.

(B and C) Performance of human (B) andmouse (C) models on held-out test sets. Regions are colored according to the density of data from light blue (low density)

to yellow (high density).

(D) Effect of training and testing model performance within and across mammalian species using a test set matched for the same set of one-to-one orthologs.

Shown is the performance for the best of 10 models acquired for the full training set derived from each species.

(E) Cumulative distributions of median mRNA expression levels among tissues for all annotated human and mouse genes as well as those corresponding to the

subset of one-to-one human-to-mouse orthologous genes.

(F) Relationship betweenmedianmRNA expression levels in human andmouse for one-to-one orthologs. The dotted red lines correspond to the threshold used to

call species-specific genes, corresponding to a 10-fold change in expression in one species relative to the other. The number of species-specific genes sur-

passing that threshold is indicated in parentheses.

(G) Performance of a classifier that uses the difference between nested, cross-validated, species-specific predictions to distinguish mRNAs whose expression is

strongly enriched in the mouse or human.
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model (diHMM), a method that annotates such domains

genome-wide in K562 and GM12878 cells using histone marks

(Marco et al., 2017). Although a subset of H3K27Ac-associated

domains were originally called ‘‘super-enhancers’’ (Marco

et al., 2017), we find it more appropriate to refer to them as

‘‘stretch enhancers,’’ which are more loosely defined as clusters

of enhancers spanning R3 kb (Parker et al., 2013). In total, we

identified 4,277 genes that overlap stretch enhancers, and

3,772 genes that overlap with H3K27me3 domains, ignoring

those that happen to overlap with both. Consistent with our

expectation, these collections of genes were significantly asso-

ciated with predominantly positive and negative residuals,

respectively, relative to the background distribution of other

genes (Figure 3B). The same was true for GM12878 cells (Fig-
ure S3B), reinforcing the generality of this finding across cell

types.

We next examined whether our residuals could be further ex-

plained by post-transcriptional gene regulatory mechanisms.

Highly reproducible mRNA half-life estimates for 5,007 genes

in K562 cells were previously measured using TimeLapse-seq

(Schofield et al., 2018). We observed a positive correlation

between mRNA half-lives (which were log transformed) and our

residuals (Pearson correlation = 0.28; p < 10�15). We visualized

this trend by splitting the half-lives into five equally sized bins

(Figure 3C). These results show that, although we included

sequence-based features associated with mRNA decay rates

in the model, these were insufficient to capture the full contribu-

tion of mRNA decay rates to steady-state mRNA levels.
Cell Reports 31, 107663, May 19, 2020 5
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Figure 3. A Diversity of Gene Regulatory Mechanisms Are Associated with the Residuals of Cell-Type-Specific Models

(A) Relationship between nested 10-fold cross-validated predictions and actual mRNA expression levels in K562 cells. Regions are colored according to the

density of data from light blue (low density) to dark blue (high density). Labeled in red are the globin genes alongside others implicated as genes activated by

strong enhancers in K562 cells. Gene names were moved slightly to enhance readability.

(B) Cumulative distributions of residuals corresponding to all stretch-enhancer-associated genes, H3K27me3-domain-associated genes, and control genes not

associated with either. Similarity of the distributions to that of the set of controls was tested (one-sided Kolmogorov-Smirnov [K-S] test, p -value); the number of

mRNAs analyzed in each category is listed in parentheses.

(C) Relationship betweenmRNA half-life and residuals in K562 cells; indicated is themedian residual value (bar), 25th and 75th percentiles (box), and theminimum

of either 1.5 times the interquartile range or the most extreme data point (whiskers). Half-life was measured using TimeLapse-seq (Schofield et al., 2018) in K562

cells (n = 5,007 genes), and partitioned into five equally sized bins spanning the range of half-life values.

(D) This panel mirrors that shown in (A), except that it highlights genes associated with known enhancers and super-enhancers in mouse embryonic stem cells

(mESCs).

(E) This panel mirrors that shown in (B), except that it compares genes associated with super-enhancers and Polycomb-repressed domains in mESCs.

(F) This panel mirrors that shown in (C), except that half-life measurements were measured using SLAM-seq (Herzog et al., 2017) in mESCs (n = 6,266 genes).

(G) Pie chart indicating the relative proportions of microRNA families expressed in mESCs. Colored are the top 10 most abundant miRNA families.

(H) Histogram of the Spearman correlation values between TargetScan7-predicted microRNA targeting efficacy (Agarwal et al., 2015) and residual expression

level in mESCs, for 222miRNA families conserved amongmammals. Highlighted are the subset of seven highly abundant miRNA families colored in panel (G) that

are also conserved among mammals.
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We next turned our attention to mESCs. Key stem cell identity

genes include Pou5f1 (also known as Oct4), Sox2, Nanog, and a

host of otherswhose dependence upon enhancers and super-en-

hancers has been experimentally validated with CRISPR-deletion

experiments (Moorthy et al., 2017; Whyte et al., 2013). Similar to

the other cell types, although a mESC-specific model could

strongly predict mRNA expression levels in mESCs (r2 = 0.59),

key stem cell identity genes harbored residuals that were strongly

biased toward positive values (Figures 3D and S3C), confirming

that their promoter sequences and mRNA sequence features

could not adequately explain their high abundance. Extending

this question more systematically to 180 protein-coding genes

thought to be governed by super-enhancers in mESCs (Whyte

et al., 2013), we observed a strong enrichment for highly positive

residuals in these genes relative to all other genes (Figure 3E).

In mESCs, genes associated with the Polycomb repressive

complex (PRC), as delineated by binding to both PRC1 and

PRC2 and frequently marked with H3K27me3, are thought to

be associated with key developmental regulators, many of which

are silenced but poised to be activated upon differentiation

(Boyer et al., 2006). We observed that this group of genes, in

contrast to the super-enhancer-associated set, exhibited a

strong enrichment in highly negative residuals relative to all other

genes (Figure 3E), consistent with a model in which PRC-tar-

geted genes are actively silenced.

Mirroring our analysis from human cells, we next evaluated the

relationship between mRNA half-lives in mESCs and our resid-

uals. We obtained reproducible mRNA half-life estimates for

6,266 genes in mESCs measured using SLAM-seq (Herzog

et al., 2017). Similar to human cell types, residuals were posi-

tively correlated with mRNA half-lives (Pearson correlation =

0.24; p < 10�15; Figure 3F).

A distinguishing feature of mESCs relative to K562 cells is

that more is known about the post-transcriptional regulatory

mechanisms governing mRNA half-life. In particular, micro-

RNAs (miRNAs) serve as strong candidates for further inquiry

as they are guided by their sequence to bind and repress

dozens to hundreds of mRNAs, mediating transcript degrada-

tion and thereby shortening an mRNA’s half-life. The miR-

290-295 locus, essential for embryonic survival, encom-

passes the most highly abundant microRNAs in mESCs. Un-

der the control of a super-enhancer, the members of this

miRNA cluster are expressed in a highly cell-type-specific

manner and are thought to operate as key post-transcriptional

regulators in ESCs (Whyte et al., 2013). We asked whether we

could use our residuals to infer the endogenous regulatory

roles of abundant miRNAs in mESCs. Defining a miRNA family

as any miRNA sharing an identical seed sequence (as indi-

cated by positions 2–8 relative to the miRNA 50 end [Agarwal

et al., 2015]), we used existing small RNA sequencing data

from mESCs (Denzler et al., 2016) (Gene Expression

Omnibus: GSE76288) to quantify miRNA family abundances

for the top 10 miRNA families. In addition to the miR-290-

295 family, we detected other highly abundant families,

including miR-17/20/93/106, miR-19, miR-25/32/92/363/367,

miR-15/16/195/332/497, and miR-130/301; these miRNA

families collectively comprised more than 75% of the total

miRNA pool in mESCs (Figure 3G).
For each of the 222 miRNA families conserved across the

mammalian phylogeny, which includes 7 of the 10 top miRNA

families in mESCs, we assessed whether the predicted repres-

sion of targets correlated to our residuals. We used the TargetS-

can7 cumulative weighted context+ score (CWCS) (Agarwal

et al., 2015) to rank predicted, conserved targets for the subset

of mRNAs expressed in mESCs, assigning a CWCS of zero for

non-targets. The miRNA family with the most highly ranked

Spearman correlation corresponded to that of the miR-291a-

3p/294/295/302abd family (Figure 3H), which was also the

most highly expressed miRNA family in ES cells. The sign of

this correlation was consistent with expectation because targets

with more highly negative CWCSs (corresponding to predicted

targets with greater confidence) had negatively shifted residual

values. More generally, the 22 miRNA families comprising the

highest 10% of Spearman correlations were strongly enriched

for the seven miRNA families highly abundant in mESCs (p <

10�5, Fisher’s exact test; Figure 3H). Our results thus reinforce

the finding that highly abundant miRNAs mediate target sup-

pression (Mullokandov et al., 2012) and provide an alternative,

fully computational method to infer highly active endogenous

miRNA families in specific cell types solely from primary

sequence and gene expression data. Collectively, we anticipate

that cell-type-specific quantitative models for any arbitrary cell

type can serve as a useful hypothesis generation engine for the

characterization of active regulatory regions in the genome and

key regulators such as miRNAs, including for cell types in which

histone ChIP and small RNA sequencing data are limited or

unavailable.

Performance of Cell-Type-Specific Xpresso Models
To further characterize the ability of Xpresso to learn cell-type-

specific expression patterns, we evaluated the relative perfor-

mance of cell-type-agnostic and cell-type-specific models in

predicting cell-type-specific mRNA levels. In all three cases

considered, models trained on the cell type of origin out-per-

formed those trained on median expression levels by about

3%–5% (Figure 4A). We next compared our K562 and

GM12878 Xpresso models to evaluate how well these models

could discriminate cell-type-specific mRNAs. We identified a

cohort of 1,977 mRNAs enriched by at least 10-fold in one of

these cell types relative to the other (Figure 4B). A binary classi-

fier based upon the difference in predictions from each cell type

could discriminate these cell-type-specific mRNAs modestly

better than chance expectation (AUC = 0.65; Figure 4C).

Next, we sought to estimate the maximum possible perfor-

mance for predicting gene expression from promoter sequences

alone. A genome-wide MPRA measuring autonomous promoter

activity in K562 cells, called Survey of Regulatory Elements

(SuRE), linked 200 bp to 2-kb regions of the genome to an

episomally encoded reporter to measure the transcriptional po-

tential of regulatory sequences (van Arensbergen et al., 2017).

SuRE, therefore, provides a means of assessing the regulatory

information held in promoters that is independent of the influ-

ence of genomic context and distal regulatory elements. We

observed that SuRE activity in the ±500-bp promoter region

around a TSS was highly correlated to mRNA expression levels

in K562 cells (r2 = 0.53; Figure 4D).
Cell Reports 31, 107663, May 19, 2020 7
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Figure 4. Cell-Type-Specific Models Are Competitive with Methods Based upon Experimental Data

(A) Variance explained in mRNA expression levels in each of three cell types (human K562 and GM12878 cells as well as mouse embryonic stem cells), using

models trained on median expression levels (i.e., cell-type-agnostic model) or on the matched cell type (i.e., cell-type-specific model). The r2 shown is derived

from the entire dataset, using the nested cross-validated predictions of each strategy.

(B) Relationship between mRNA expression levels in GM12878 and K562 cells. The dotted red lines correspond to the threshold used to call cell-type-specific

genes, corresponding to a 10-fold change in expression in one cell type relative to the other. The number of cell-type-specific genes surpassing that threshold is

indicated in parentheses.

(C) Performance of a classifier that uses the difference between cell-type-specific predictions to distinguish mRNAs whose expression is strongly enriched in

either GM12878 or K562 cells.

(D) Shown in the left panel is the relationship between SuRE (van Arensbergen et al., 2017), a massively parallel reporter assay (MPRA) to measure autonomous

promoter activity, and mRNA expression levels in K562 cells. Shown in the right panel is the relationship between a joint SuRE and Xpresso model and mRNA

expression levels in K562 cells.

(E) Comparison of our sequence-only models to those derived from alternative strategies reported in the literature, often trained using a variety of cell-type-

matched experimental datasets (i.e., as input or during intermediate training stages), such as those based upon ChIP of transcription factors or specific histone

marks, DNase hypersensitivity measurements, andMPRAs. Methods using nothing more than genomic sequence to predict expression are highlighted in purple,

and results in human and mouse are shown in blue and red, respectively.
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The comparable r2 achieved by SuRE measurements and the

K562-specific Xpresso model in predicting K562 expression

levels (r2 = 0.53 and 0.51, respectively) provided a unique oppor-

tunity to evaluate howwell our model captured the experimentally

measurable information regarding a promoter’s transcriptional

activity. To assess the level of information shared between

SuRE measurements and Xpresso predictions, we built a joint

model to predict K562 levels (r2 = 0.61; Figure 4D). This modest

10% increase in performance over Xpresso alone indicates that

Xpresso was able to learn the major sources of sequence-en-

coded information that explain mRNA expression levels.

Predictive Models Perform Competitively with Models
Using Experimental Data
We next evaluated the performance of Xpresso relative to an

assortment of baseline and pre-existing models that attempted

to predict mRNA levels, both with and without the consideration

ofmRNAhalf-life features. For the baselinemodels, we attempted

to predict median expression level using simple k-mer counts in
8 Cell Reports 31, 107663, May 19, 2020
the ±1,500-bp promoter region, the presence of predicted TF

binding sites given known motifs available in the JASPAR data-

base, or jointmodels consideringboth (FigureS4A). Thesemodels

were trained using simplemultiple linear regression and evaluated

on the same test set as that used inFigure2. Varying the k-mer size

from k = 1 to 6, we found the greatest gain in performance occur-

ring between k = 1 and 2 in both species. Consideration of known

TF binding sites in a joint model at best only marginally improved

performance, although a model considering these binding sites

alone performed as well as a model based on 2-mers.

All of themodels benefitted from the additional consideration of

half-life features. We evaluated the coefficients associated with a

model considering only half-life features to assess the relative

contribution of individual features. The features most strongly

associated with increased steady-state mRNA abundance in

both the human and mouse corresponded to ORF exon density

and 50 UTR GC content, followed by weaker associations to 50

UTR length and ORF length. In contrast, intron length was nega-

tively associated with mRNA abundance (Figure S4B).
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Overall, although our baseline models demonstrated that

models built upon simple features could perform surprisingly

well, our hyperparameter-tuned Xpresso model improved upon

those models by 11.2% and 11.7% in human and mouse,

respectively (Figure S4A). Our nested 10-fold cross-validation

results further verified that Xpresso performed significantly bet-

ter than the best alternative k-mer-based approach in both the

human and mouse (Figure S4C).

Next, we compared our best baseline and Xpressomodels with

the reported results from existing models described in the litera-

ture, delineating five categories based upon the types of features

used either as input data or as intermediate training stages: (1)

those using nothingmore than sequence features, which included

our method and three others (Abdalla et al., 2018; Bessière et al.,

2018; McLeay et al., 2012); (2) those using MPRAs to measure

promoter activity (van Arensbergen et al., 2017; Cooper et al.,

2006; Landolin et al., 2010; Nguyen et al., 2016); (3) those using

the binding signal of TFs at promoter regions, as measured by

ChIP (Cheng et al., 2011, 2012; McLeay et al., 2012; Ouyang

et al., 2009; Zhou et al., 2018); (4) those using the signal of histone

marks, such as H3K4me1, H3K4me3, H3K9me3, H3K27Ac,

H3K27me3, and H3K36me3 at promoters and gene bodies, as

measured by ChIP (Abdalla et al., 2018; Cheng et al., 2011;

Dong et al., 2012; Karli�c et al., 2010;McLeay et al., 2012; Schmidt

et al., 2017; Zhou et al., 2018); and (5) those using the DNase hy-

persensitivity signal at promoters and nearby enhancers (Dong

et al., 2012; Duren et al., 2017; McLeay et al., 2012; Schmidt

et al., 2017; Zhou et al., 2018) (Figure 4E). Many of these models

were trained and tested on cell lines, such as K562, GM12878,

and mESCs, for which ChIP data are available for a multitude of

histone marks and TFs. Thus, we were also able to compare the

relative performance of our cell-type-specific models for these

same cell lines. When matching for cell type, our Xpresso models

nearly doubled the performance of alternative sequence-only

models (Figure 4E). MPRA-based models exhibited a wide diver-

sity of r2 values, although the genome-wide MPRA performed in

K562 cells (van Arensbergen et al., 2017) performed comparably

to Xpresso. Among all models examined, those using multiple

forms of experimental data, such as TF ChIP, histone ChIP, and

Dnase, achieved the best r2 values of 0.62 (Dong et al., 2012)

and 0.70 (McLeay et al., 2012) in human andmouse, respectively.

Overall, models using nothing more than genomic sequence

are capable of explaining mRNA expression levels with as

much predictive power as—and, often, more than—analogous

models trained on abundant experimental data (Figure 4E). Our

models have the advantage that they are simple to train on any

arbitrary cell type, including those lacking experimental data,

such as ChIP and DNase. Furthermore, sequence-only models

can further augment the performance of existing models that

predict mRNA levels in cell types for which experimental data

are already available (Figure 4D).

Xpresso Predicts Genome-Wide Patterns of
Transcriptional Activity
Convolutional neural networks have successfully been used to

predict patterns of CAGE activity and histone ChIP signal

throughout the genome. To accomplish that feat, a deep convo-

lutional neural network was trained on genome-wide information
across entire chromosomes, using 131-kb windows that collec-

tively encompassed �60% of the human and/or mouse ge-

nomes (Kelley, 2019; Kelley et al., 2018). This led us to ask

whether it was possible to predict a genome-wide CAGE signal

using our cell-type-agnostic Xpresso model, which was trained,

in contrast, on 10.5-kb windows comprising only�5% of the hu-

man genome. As a proof of concept, we fixed the half-life fea-

tures to equal that of the average gene and generated pro-

moter-activity predictions in 100-bp increments along a

randomly selected 800-kb region of the human genome that en-

compassed 20 genes, visualizing whether Xpresso could reca-

pitulate the average pattern of CAGE activity across cell types

(Figure 5). We observed that the Xpresso predictions faithfully re-

produced the pattern of CAGE activity (FANTOM Consortium

et al., 2014; Lizio et al., 2015) in this region. Peaks of high pre-

dicted transcriptional activity frequently corresponded to CpG

islands (Gardiner-Garden and Frommer, 1987) and promoter re-

gions across multiple cell types, as predicted by ChromHMM

(Ernst and Kellis, 2012). Xpresso predicted similar expression

signatures for both positive and negative DNA strands. Confirm-

ing that our results generalize across species, we observed

consistent results on the 700-kb syntenic locus of the mouse

genome (Figure S5).

XpressoHighlights the Importance of theCore Promoter
Sequence in Predicting Expression Levels
Interested in ascertaining how our deep learning models could

predict cell-type-agnostic gene expression levels with high ac-

curacy, we developed a procedure to interpret the dominant fea-

tures learned. Specifically, we tested four strategies intended to

map the regions of the input space of deep learning models with

the greatest contribution to the final prediction: (1) gradient *

input, (2) integrated gradients, (3) DeepLIFT (with rescale rules),

and (4) ε-LRP (Ancona et al., 2018). Each of these methods

computed ‘‘saliency scores,’’ which represent a decomposition

of the final prediction values into their constituent individual

feature importance scores for each nucleotide in the input pro-

moter sequences. We partitioned genes into four groups,

including those predicted to be approximately non-expressed

and three additional terciles (predicted low, medium, or high

expression). We computed mean saliency scores for each of

those groups and then computed the difference in mean scores

relative to predicted non-expressed genes for each nucleotide

position in the entire input window (i.e., 7 kb upstream of the

TSS to 3.5 kb downstream). Averaging our results across our

nested 10-fold cross-validated models, we discovered that the

models had automatically learned to consistently rely upon local

sequences from the 1-kb sequence centered upon the TSS to

predict gene expression (Figures 6A and S6). Sequences in the

core promoter (i.e., within 100 bp upstream of the TSS) best-dis-

cerned genes that were predicted to have high expression from

those predicted to have medium expression (Figure 6A). Thus,

from only genomic sequence and expression data, the model

automatically learned spatial relationships that are consistent

with experimental measurements (van Arensbergen et al., 2017).

Of note, because we used rectified linear units (ReLUs) in our

networks, the ε-LRP method resulted in identical results as the

gradient * input method (Ancona et al., 2018) (gradient * input:
Cell Reports 31, 107663, May 19, 2020 9



Figure 5. Xpresso Predictions Recapitulate Transcriptional Activity across a 800-kb Region of Human Chromosome 1
Shown are the Xpresso-predicted expression levels in 100-nt increments from the plus and minus strands of genomic sequence of the human hg19 genome

assembly. Also shown are gene annotations, CpG island calls, ChromHMM genomic state segmentation calls among two cell types (with predicted promoter

hidden states colored in red), and genome-wide CAGE signal aggregated among many cell types (with red indicating signal from the positive strand and blue

indicating signal from the negative strand).
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Figure S6A; ε-LRP: data not shown). We also observed that the

DeepLIFT method led to nearly identical results as the integrated

gradients technique (integrated gradients: Figure S6B; Deep-

LIFT: data not shown), as observed previously in other contexts

(Ancona et al., 2018). The results in the mouse model also

emulated those of the human (Figures S6C and S6D), indicating

that they generalize across species and do not depend upon the

specific saliency scoring method used.

Although, in principle, it would be valuable to evaluate the

saliency scores of individual promoters to dissect their regulatory

grammar, we caution that the underlying methods are insuffi-

ciently robust to allow for mechanistic inferences at that

resolution. Specifically, we have observed that, when we retrain

convolutional architectures (specified by a fixed set of hyperpara-

meters) on a fixed training set, the learned models can converge

upon different sets of parameters, many of which can produce

similar final predictions. However, the saliency scores from

each learned model can differ substantially, indicating a lack of

robustness; this problem and others are known limitations of neu-

ral network interpretation schemes (Ghorbani et al., 2017).

CpG Dinucleotides Are the Dominant Signal Explaining
Expression Levels
The ability of the model to automatically identify and heavily

weight the core promoter in the expression prediction task natu-

rally led to the question of which sequence motifs within this re-

gion were responsible for quantitatively defining expression

level. We, therefore, devised a strategy to identify k-mers en-

riched in the genes predicted to be highly expressed (Figure 6B).

The distribution of predicted gene expression levels was largely

bimodal, allowing the partitioning of genes broadly into genes

predicted to have low expression (class A) and high expression
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(class B). We extracted sub-sequences from the promoters of

class Bwhose saliency scores were higher than the 99th percen-

tile of those observed at the same positions in the promoters of

class A. To identify enriched k-mers in this set of sub-sequences,

we devised an equivalently sized negative set of sub-sequences

by permuting the extracted positions in class B to control for po-

sitional sequence biases. We then used DREME (Bailey, 2011) to

identify k-mers enriched in our positive set relative to our nega-

tive set. Evaluating the E-values of the top five significantly en-

riched k-mers, we observed the dinucleotide CpG as enriched

by orders of magnitude over the second best k-mer (Figure 6B),

implicating it as a dominant factor discriminating highly ex-

pressed genes from lowly expressed ones.We repeated our pro-

cedure on genes in the top half of class B relative to its lower half,

and identified an even stronger enrichment of CpG dinucleotides

(data not shown). These observations suggest that both the

mouse and human models predominantly use the spatial distri-

bution of CpG dinucleotides surrounding the core promoter to

predict the entire continuum of gene expression levels.

The model, therefore, arrives at a specific prediction: CpG di-

nucleotides are more enriched in the core promoters of highly

expressed genes, relative to lowly expressed genes. To test

that hypothesis, we evaluated the positional enrichment of all

16 possible dinucleotides around the TSS of genes in different

gene expression bins, relative to chance expectation. Although

CpGs are globally depleted, genes in higher gene expression

bins preserved a greater fraction of CpGs closer to the TSS

(Figure 6C). This property was true to a much lesser extent

for other dinucleotides, with only AA/TT, CA/TG, and CC/GG

dinucleotides being able to discriminate between highly and

lowly expressed genes in both human and mouse genomes

(Figure S7).
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Figure 6. The Spatial Distribution of CpGDi-

nucleotides in the Core Promoter Predicts

Gene Expression Levels

(A) Mean saliency scores (computed using the

‘‘gradient * input’’ approach), relative to predicted

non-expressed genes, for genes in three terciles of

expression bins. Data have been loess-smoothed

at the resolution of 100 bp.

(B) Strategy to ascertain enriched k-mers in genes

predicted to be highly expressed. Shown are the

top five significantly enriched k-mers retrieved

from the human and mouse models.

(C) Positional enrichment of CpG dinucleotides

relative to chance expectation in human pro-

moters for different gene expression level bins.

The expected frequency of CpG dinucleotides is

computed as the joint probability of the composite

C and G co-occurring based upon their frequency

in the corresponding position and gene expres-

sion bin. Data have been loess-smoothed at the

resolution of 100 bp.
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DISCUSSION

In this study, we demonstrate that a substantial proportion of

variability across genes with respect to their steady-state

mRNA expression levels is predictable from features derived

solely from genomic sequence. In doing so, our work illus-

trates—as is the case for gene prediction—that the mathemat-

ical function linking genomic sequence to mRNA abundance is,

in a large part, learnable without the use of additional sources

of experimental data, such as those derived from DNase hyper-

sensitivity, TF ChIP, histone ChIP, or MPRAs. Consistent with

dogma and experiments (van Arensbergen et al., 2017), we

find that the instructions governing transcriptional output are

heavily enriched in a gene’s core promoter (more specifically,

the ±500 bp around the TSS). We establish Xpresso as an early

initial attempt to confront the problem of gene-expression pre-

diction from genomic sequence alone and anticipate that future

algorithms can use our effort as a baseline model to improve

upon this prediction task.

Our study provides a theoretical framework to further under-

stand the fundamental question of how different modes of

gene regulation contribute to steady-state abundance of

mRNA. Querying the performance of the model while consid-

ering subsets of features associated with various mechanisms

of gene regulation (e.g., mRNA decay and transcription rate)

helped dissect their relative contributions to steady-state

mRNA levels. Based on the proportion of variance explained

by our model, thus far, we estimate that promoter sequences

alone explain �50% of gene expression variability in humans.

Collectively, these results reveal that in silico strategies to esti-

mate the relative influence of various modes of gene regulation

can approximate those more directly relying on experimental

measurement.

Although our model makes substantial headway into predict-

ing expression levels, between 40%–60% of variability still re-
mains unexplained, depending upon the cell type and species

considered. We propose that the limitations of our model are

also interesting in that they have the potential to inform and

resolve the many layers of gene regulation that the model fails

to capture. A residual analysis of highly expressed genes that

the model underpredicts confirms that enhancers and super-en-

hancers have a measurably significant role in governing tran-

scriptional programs. Incorporation of the effects of enhancers

in the model is complicated by the difficulty of predicting which

promoter(s) any given enhancer influences because these can

be positioned hundreds of kilobases away and skip over genes,

as well as the extent to which parameters such as distance

modulate the level of enhancer-mediated activation. Such

long-range dependencies are poorly modeled by convolutional

neural networks. Although the incorporation of distal enhancers

into themodel has proved to be evasively difficult, the model can

be used as a hypothesis generation engine to uncover additional

gene regulatory mechanisms that further explain outliers. For

example, our model provides a natural strategy to quantitatively

rank candidate silenced and activated genes in different cell

types in a way that prioritizes those that most heavily deviate

from its predictions. We propose these rankings as a foundation

to guide experimentalists interested in dissecting the layers of

gene regulation that operate in their cell type of interest. In partic-

ular, such rankings could inform the selection of candidate reg-

ulatory elements to test by CRISPR-based functional assays

(Gasperini et al., 2019; Klein et al., 2018) or MPRAs (van Are-

nsbergen et al., 2017; Inoue and Ahituv, 2015).

We anticipate other potential applications for our model, such

as in the realms of synthetic biology and medical genetics. For

the former, models such as Xpresso could be used to design

synthetic promoters with tunable levels of transcriptional activity.

For the latter, methods such as Xpresso could be used to inter-

pret the functional consequences of genetic mutations or indels

within promoters on gene expression levels, e.g., to inform the
Cell Reports 31, 107663, May 19, 2020 11
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interpretation of genome-wide association studies and expres-

sion quantitative trait loci (eQTL) analysis. Although there is

already promise for methods development in that direction

(Zhou et al., 2018), it is currently premature to deploy such sys-

tems in the clinical realm because this requires much higher

levels of predictive accuracy than are currently achieved by us

or others.

Scanning large regions of the genome with our pipeline re-

vealed a striking association between regions of high predicted

transcriptional activity and CpG islands. Although CpG islands

are a well-established feature of mammalian genomes that

frequently demarcate promoter sequences (Antequera, 2003;

Gardiner-Garden and Frommer, 1987), our results support the

idea that the spatial positioning of CpGs around the core pro-

moter is intimately associated with gene expression levels. Our

data, therefore, reinforce the findings fromMPRAs that promoter

regions enriched with CpG dinucleotides are functionally associ-

ated with increased gene expression levels (van Arensbergen

et al., 2017; Hartl et al., 2019).

Looking forward, we envision the delineation of a set of math-

ematical functions for each cell type, which can accurately

predict itsmRNA expression level from genome sequence alone,

to be a grand challenge for the field. As shown here, this frame-

work will allow us to quantify and characterize the mechanisms

of gene regulation of which we are aware and may draw our

attention to ones that have yet to be discovered.
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Materials Availability
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Data and Code Availability
Original/source data for Figures 3 and 4 in the paper is available in Table S1. Associated code necessary to perform a hyperparameter

search, train, and test the deep learningmodels is available at https://github.com/vagarwal87/Xpresso, our website (https://xpresso.

gs.washington.edu), and associated Google Colab iPython notebook.

METHOD DETAILS

Gene Expression Data Collection and Pre-processing
We retrieved amatrix of normalized expression values for protein-coding mRNAs across 56 tissues and cell lines from RNA-seq data

gathered and quantified by the Epigenomics Roadmap Consortium (https://egg2.wustl.edu/roadmap/data/byDataType/rna/

expression/57epigenomes.RPKM.pc.gz) (Roadmap Epigenomics Consortium et al., 2015).

For mouse gene expression data, we gathered all ENCODE RNA-seq datasets satisfying the following constraints: i) datasets cor-

responded to ‘‘polyA-selected mRNA RNA-seq’’ or ‘‘total RNA-seq,’’ ii) reads were mapped to the Mus musculus mm10 genome

assembly, iii) files were ‘‘tsv’’ files corresponding to gene-level quantifications, iv) biosamples were not treated with ‘‘DMS,’’

‘‘LPS,’’ or ‘‘b-estradiol,’’ v) files were not derived from samples with ‘‘low replicate concordance,’’ ‘‘low read depth,’’ ‘‘insufficient

read depth,’’ or ‘‘insufficient read length.’’ Only samples corresponding to the first replicate of each tissue or cell line were utilized.

In total, 254mouse RNA-seq datasets passed these criteria. For cell-type-specific questions in themouse, we used gene expression

data from mESCs that were computed previously (Ouyang et al., 2009).

For each species, we computed the median expression level across all cell types for each gene, and transformed all gene expres-

sion values y such that: ŷ ) log10(y + 0.1) to reduce the right skew of the data. Quantile normalizing the samples of the mouse gene

expression matrix prior to computing the median values resulted in nearly an identical set of median expression levels (i.e., 0.9996

correlation before and after quantile normalization), making this step optional.

One-to-one human-to-mouse orthologs were acquired from the Ensembl v90 BioMart (Aken et al., 2017) by extracting the ‘‘Mouse

gene stable ID’’ and ‘‘Mouse homology type’’ with respect to each human gene.
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Collecting Promoter Sequences and mRNA Half-life Features
Human and mouse promoter CAGE peak annotations were downloaded from the FANTOM5 consortium’s UCSC data hub (https://

fantom.gsc.riken.jp/5/datahub/hg38/peaks/hg38.cage_peak.bb, hg38 genome build; https://fantom.gsc.riken.jp/5/datahub/mm10/

peaks/mm10.cage_peak.bb, mm10 genome build) (Fantom Consortium et al., 2014; Lizio et al., 2015). The best peak corresponding

to each promoter, labeled with the keyword ‘‘p1@,’’ was extracted. HUGO gene names or gene name synonymswere converted into

Ensembl IDs using the Ensembl v90 BioMart, HGNC ID tables (https://www.genenames.org/download/custom/), and Mouse

Genome Informatics gene model tables (http://www.informatics.jax.org/downloads/reports/MGI_Gene_Model_Coord.rpt).

Gene annotations for protein coding genes were derived from Ensembl v90 (hg38 genome build) (Aken et al., 2017). Only protein-

coding genes were carried forward for analysis, with the following genes filtered out as sources of bias: i) genes located on chrY,

whose gene expression depended upon whether their cells of origin were male or female, ii) histone genes, whose expression

was mis-quantified due to their mRNAs lacking poly(A) tails, therefore being undersampled in poly(A)-selected RNA-seq libraries.

Out of all transcripts corresponding to each gene, the one with the longest ORF, followed by the longest 50 UTR, followed by the

longest 30 UTR was chosen as the representative transcript for that gene. The G/C content and lengths of each of these functional

regions (i.e., 50 UTRs, ORFs, and 30 UTRs), intron length, and ORF exon junction density (computed as the number of exon junctions

per kilobase of ORF sequence) were gathered as additional features associated withmRNA half-life (Sharova et al., 2009; Spies et al.,

2013). All length-related features were transformed such that: bx ) log10(x + 0.1) to reduce the right skew, and along with gene

expression levels were then z-score normalized by subtracting their respective mean values and dividing by their standard devia-

tions. The starting coordinate of the first exon of the representative transcript was defined as that gene’s transcriptional start site

(TSS). The vast majority of mRNAs possessed a dominant CAGE peak; if this was so, the TSS was re-centered to the coordinates

of the CAGE peak.While considering CAGE data helped to improve ourmodel, its usewas optional as the performance of ourmodels

was onlymodestly worse when considering only Ensembl TSS annotations (r2 of 0.54 instead of 0.59 in the human). The ± 10 kilobase

sequence centered at the TSS was extracted as the putative promoter region to consider. Intermediate steps such as extracting se-

quences from the genome or converting between bed formats were executed with BEDTools (Quinlan and Hall, 2010).

Hyperparameter Optimization and Model Training
Matching gene expression levels to promoter sequences resulted in a total of 18,377 and 21,856 genes in human andmouse, respec-

tively. All continuous variables were mean-centered and scaled to have unit variance, and promoter sequences were one-hot en-

coded into a boolean matrix. For each species, genes were then randomly partitioned into training, validation, and test sets such

that the validation and test sets were allotted 1,000 genes each. We defined the objective function as the minimum mean squared

error achieved on the validation set across 10 epochs of training. For the best set of hyperparameters specifying the neural network

structure, we trained ten independent trials, and selected the parameters derived from the specific trial and epoch that minimized the

validation MSE as our final model. For each trial, parameters were first randomly initialized by sampling from a Glorot normal distri-

bution (Chollet, 2015). Next, the Adam optimizer was used to search for a local minima (Chollet, 2015). The search was performed for

100 epochs but cancelled if a lower validation MSE was not discovered within 7 epochs of the best model discovered so far for that

trial. If a nested cross-validation strategy was implemented, we performed an identical strategy for each of the 10-folds of the data

using the respective training and validation sets of the fold. The following software packages were required for model training and

testing: Keras 2.0.8 (Chollet, 2015), TensorFlow 1.3.0 (Abadi et al., 2016), CUDA 8.0.61, cuDNN 5.1.10, and the Anaconda2 distribu-

tion of Python.We initialized a hyperparameter search space to specify themodel architecture (Table 1), and usedHyperopt (Bergstra

et al., 2013) to search for an optimal set of hyperparameters. All models were trained on anNVIDIA Quadro P6000GPU equippedwith

24Gb of video RAM.

Whole-Transcriptome Predictions
To predict expression levels for all annotated genes, we implemented a nested 10-fold cross-validation procedure. Specifically, we

partitioned the dataset into 10 equally sized bins. For each fold, we i) reserved 1/10 of the data as a test set, 1000 genes as a validation

set, and the remaining genes as a training set; ii) trained 10 independent models until convergence, iii) selected the model with the

minimum validation mean squared error, and iv) generated a prediction on the test set. We then concatenated all of the predictions

together that were derived from the best model from each of the ten folds of the data (Table S1).

SuRE MPRA Data
Pre-processed genome-wide, stranded SuREMPRA datamapped to hg19was acquired as bigwig files fromGEO record GSE78709

(van Arensbergen et al., 2017). To compute SuRE activity at a specified promoter, we extracted the mean SuRE signal over covered

bases on the correct strand as the gene, centered at 1000bp around the TSS, using utilities provided in the UCSC genome browser

(‘‘bigWigAverageOverBed -sampleAroundCenter=1000’’) (Kent et al., 2002). For the TSS annotations, we utilized our set of CAGE-

corrected TSSs lifted over from hg38 to hg19 using liftOver (Kent et al., 2002), supplemented with TSSs for genes annotated in Gen-

code release 27/Ensembl v90 for any missing IDs (https://www.gencodegenes.org/releases/27lift37.html) (Harrow et al., 2012).
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Baseline Models
To train baselinemodels for comparison (Figure S4), wemerged the training and validation sets used initially for hyperparameter opti-

mization and model training. For each gene, we first extracted the ± 1500bp window centered at each TSS and defined this as the

promoter. For k-mer-based models, we counted the frequency of all k-mers occurring in the promoter region, varying k from 1 to 5

and 6 for human and mouse, respectively. To train transcription-factor-based models, we scanned promoters using FIMO (Grant

et al., 2011) using positional weight matrices derived from the JASPAR 2016 Core Vertebrate set (Mathelier et al., 2016). Default pa-

rameters were used for the search, except that the set of promoter sequences to compute a first order Markov backgroundmodel for

the search. For the transcription factors matched to the promoters, we populated a binary matrix with a 1 if a significant motif was

detected for the promoter, and 0 otherwise. We then trained multiple linear regression models explaining median mRNA expression

levels as a function of i) the collection of k-mer counts, ii) the binarymatrix of JASPARmatches, or iii) both of the former. Thesemodels

were trained both with and without half-life features, with the r2 (i.e., the coefficient of determination, computed as the square of the

Pearson correlation) evaluated on the test set.

Prediction on a Genomic Window
We extracted 10.5Kb sequences tiling across the 600 Kb and 700 Kb regions of the human and mouse genomes, respectively, in

100bp increments (Genome coordinates: chr1:109500000-110300000, hg19 genome build; chr3:107800000-108500000, mm10

genome build). The ‘‘bedtools makewindows’’ (parameters ‘‘-w 10500 -s 100’’) was used to generate these windows, and ‘‘bedtools

getfasta’’ to extract the sequences (Quinlan and Hall, 2010). Predictions were thenmade using our cell-type-agnostic Xpressomodel

trained upon median gene expression data, using zero values for all half-life features (with zero corresponding to the mean values as

these features had been z-score normalized).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details, including the statistical tests used, what n represents, and dispersion and precision measures (e.g., mean,

median, SD, confidence intervals), can be found in the legends of the corresponding figures.
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