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SUMMARY
The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing
their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based line-
age recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information.
Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover �380,000 CRISPR
target sites and reconstruct dissemination of �28,000 single cells across multiple metastatic sites. We find
that cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) states. Metastatic potential
peaks in rare, late-hybrid EMT states, which are aggressively selected from a predominately epithelial ances-
tral pool. The gene signatures of these late-hybrid EMT states are predictive of reduced survival in both hu-
man pancreatic and lung cancer patients, highlighting their relevance to clinical disease progression. Finally,
we observe evidence for in vivo propagation of S100 family gene expression across clonally distinct metasta-
tic subpopulations.
INTRODUCTION

The vast majority of cancer deaths are due to metastasis, a pro-

cess that transforms a localized, often curable lesion into a sys-

temic, largely incurable disease (Hunter et al., 2018; Turajlic and

Swanton 2016). Recurrent genetic drivers of metastasis have

proven elusive, suggesting that other levels of dysregulation

may principally drive the phenomenon (Hunter et al., 2018).

Phylogenetic histories of cancer progression in individual pa-

tients, e.g., based on analyses of copy number variation (CNV)

or somatic mutation, can inform how the cells comprisingmetas-

tases are related to the primary tumor, as well as to one another

(Naxerova and Jain 2015). However, suchmethods are restricted

to natural genetic diversity and additionally fail to concomitantly

capture the molecular phenotype of each profiled cell, limiting

what can be learned about the cellular programs that underlie

the development and success of distinct metastatic clones.
1150 Cancer Cell 39, 1150–1162, August 9, 2021 ª 2021 Elsevier Inc
Some alternatives to retrospective phylogenetic approaches

are traditional prospective lineage tracing methods, such as len-

tiviral barcoding, which involves tagging cells with unique DNA

barcodes (Lu et al., 2011). However, such "static" barcoding

strategies are generally restricted to introducing labeling diver-

sity in vitro and at a single time point. Therefore, they are unable

to capture critical in vivo processes, including any selection of in-

traclonal genetic or epigenetic heterogeneity emerging after the

point of labeling.

Beginning with GESTALT (genome editing of synthetic target

arrays for lineage tracing) (McKenna et al., 2016), a new para-

digm for in vivo lineage tracing has emerged, employing

CRISPR-Cas9 to progressively and stochastically mutagenize

a compact, genomically integrated barcode, thereby producing

patterns of edits that can be used to reconstruct phylogenetic re-

lationships among cells (McKenna and Gagnon 2019). Such

methods can be coupled to single-cell RNA sequencing
.
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Figure 1. macsGESTALT for high-resolution lineage tracing

(A) Genetic components of macsGESTALT.

(B) Clone-level information is stored in static barcodes, while subclonal phylogenetic information is dynamically encoded into evolving barcodes via insertions and

deletions (indels, blue and red bars) induced by doxycycline.

(C) Two example clones from a population with n clones, each with a random number of integrated barcodes. Evolving barcode edits are encoded and inherited

as cells divide.

(D) Generation of a macsGESTALT barcoded population of cells and experimental workflow.

(E) macsGESTALT analysis workflow. Dox, doxycycline; rtTA, reverse tetracycline transactivator; TRE, tetracycline-responsive element.

See also Figures S1 and S2.
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(scRNA-seq) to explicitly relate cell lineage histories to transcrip-

tional states (Raj et al., 2018; Spanjaard et al., 2018; Chan et al.,

2019). Until recently, GESTALT and related methods have pri-

marily been applied to early development, e.g., by injection of

components into zygotes and subsequent profiling of edited

barcodes and single-cell transcriptomes from the resulting or-

ganism (Bowling et al., 2020; Quinn et al., 2021). This strategy

is fundamentally difficult to translate across biological systems

as it requires specialized injection and titration. Furthermore,

as components are neither integrated nor inducible, such sys-

tems are not amenable to longer-term or time-delayed studies

in adult animals. However, with refinement, CRISPR-Cas9-

based lineage tracers hold potential to be useful in contexts

outside of early development, such as the study of somatic

stem cell dynamics or cancer metastasis.
RESULTS

An inducible lineage recorder with scRNA-seq readout
To this end, we developed macsGESTALT (multiplexed, activat-

able, clonal and subclonal GESTALT), an integrated, inducible,
and scalablemethod that can be easily adapted to any engineer-

able mammalian system to enable lineage tracing (Figure 1). Our

approach consists of three components (Figure 1A):

(1) Each cell contains multiple unique barcode integrations.

Barcodes are constitutively expressed within the 30 un-
translated region of a polyadenylated pac (puromycin

N-acetyl-transferase) transcript, enabling sequencing

via standard mRNA-based capture. Each barcode is a

combination of a static 10 bp sequence of random bases,

used for clonal reconstruction, and a 250 bp editable,

evolving region composed of five CRISPR target sites,

used for phylogenetic reconstruction (Figures 1B–1E).

(2) The evolving region is targeted by an array of five guide

RNAs (gRNAs), separated by transfer RNA (tRNA)

spacers, under a single constitutive mammalian U6 pro-

moter. Upon transcription, tRNAs are excised from the

array by endogenous RNases P and Z, releasing the

individual gRNAs (Port and Bullock 2016). We selected

this configuration from a screen of five different arrays,

ranging from least compact to most compact (Figures

S1A–S1G). The gRNA-tRNA array (Figure S1E)
Cancer Cell 39, 1150–1162, August 9, 2021 1151
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outperformed other compact configurations (Figures S1F

and S1G) and performed similar to the standard approach

of placing each gRNA under its own U6 promoter (Figure

S1D). Therefore, we selected the gRNA-tRNA configura-

tion for its robust editing and compact size, allowing for

easy transfer to different vectors or promoters, consistent

with our goals of creating an adaptable and broadly appli-

cable system. These results also illustrate the usefulness

of a tRNA spacing strategy for gRNA multiplexing in

mammalian systems.

(3) Cas9 expression and barcode editing are induced by

doxycycline (dox) binding to a constitutive reverse tetra-

cycline transactivator and activating a tetracycline-

responsive element promoter (Cao et al., 2016). Inducible

barcode editing in vitro was robustly driven with limited

leakiness, mostly confined to the first target site (Figures

S1H–S1K). We also validated successful barcode recov-

ery and clonal reconstruction in two independent experi-

ments, each involving limiting dilution, expansion, and

single-cell sequencing (Figures S1L–S1P).
Aggressive clones are rare and transcriptionally
divergent
Wenext set out to investigate cancermetastasis at high resolution

by combining macsGESTALT and scRNA-seq (Raj et al., 2018;

Chan et al., 2019). We focused on pancreatic ductal adenocarci-

noma (PDAC), which has a 5-year survival rate of 9%, the lowest

of any major cancer (Cancer Facts and Figures, n.d.). Further-

more, 90% of PDAC patients have some dissemination at the

time of diagnosis (Cancer Facts and Figures, n.d.). To study

PDACmetastasis, we employed a commonly used model, where

cells from KPCY (LSL-KrasG12D/+; Trp53LSL-R172H/+; Pdx1-cre;

LSL-Rosa26YFP/YFP) mouse tumors (Hingorani et al., 2005; Rhim

et al., 2012; Li et al., 2018) are orthotopically transplanted into

the pancreata of non-tumor-bearingmice (Rhimet al., 2012; Aiello

et al. 2016). This approach presents highly consistent growth and

metastasis kinetics and seeding patterns, and furthermore faith-

fully models human disease, due to the following: (1) Kras gain

of function and p53 loss of function are the most common drivers

of humanPDAC (CancerGenomeAtlas ResearchNetwork, 2017);

(2) cells experience minimal time in vitro—a drawback of tradi-

tional cell lines; and (3) a focal lesion develops in the pancreas

that (4) disseminates to the same sites as human PDAC, including

the liver and lung.

To investigate PDAC metastasis and associated transcrip-

tional states, we selected a highly metastatic line from a library

of characterized PDAC lines derived from KPCY tumors (Li

et al., 2018) (STAR Methods). To enable lineage tracing of these

cells, we introduced dox-inducible Cas9 and the gRNA array

through lentiviral transduction, and separately introduced multi-

plexed barcodes via PiggyBac-transposition, thereby producing

macsGESTALT PDAC cells (Figures 1D and 2A). To model can-

cer metastasis in vivo, we injected mouse pancreata with 30,000

macsGESTALT PDAC cells, representing thousands of static

barcode clones (Figure 2A; STAR Methods). After 1 week of

engraftment, we administered dox in the drinking water to initiate

lineage tracing. As expected, all mice were morbid at 5 weeks

post-injection (Aiello et al. 2016). We randomly selected two
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mice, M1 and M2, and harvested cells from six cancer-bearing

sites: primary tumor, liver, lung, peritoneal metastases (mets),

surgical-site met (a peritoneal met forming at the peritoneal sur-

gical incision site), and circulating tumor cells (STAR Methods).

PDAC cells were fluorescence sorted and processed for

scRNA-seq of transcriptomes and macsGESTALT barcodes.

Overall, 89% of transcriptomes had corresponding clonal line-

age information for M1 and 77% for M2, demonstrating

improved barcode recovery using macsGESTALT compared

with prior methods (Raj et al., 2018; Bowling et al., 2020).

Notably, we observed a positive correlation between the recov-

ery of a cell’s transcriptomic RNA and the barcode RNA (r = 0.64,

p < 2.2 3 10�16) (Figure S2A). While the majority of cells had

10,000–100,000 transcriptome-derived transcripts and 10–100

barcode-derived transcripts, lower-quality cells with low

transcriptome recovery (<5,000 transcripts) often had barcode

recovery at the limit of detection (one or two transcripts).

Cells entirely lacking barcode information appeared to be a nat-

ural extension of this trend, as we recovered on average less

than half of the overall transcriptomic RNA from these cells rela-

tive to those with barcodes recovered (Welch’s t test, p < 2.2 3

10�16) (Figure S2B). Thus, barcode recovery appeared to be a

function of cell quality and total RNA recovery rather than result-

ing from any specific bias or silencing event.With this inmind, we

retained only cells with both high-quality transcriptome and bar-

code information for downstream analyses (Figures S2C–S2K).

In total, across all sites in both mice, we recovered both the

transcriptome and the clonal history for 28,028 single cells

(M1, 12,657; M2, 15,371) (Figures S2C–S2K). The set of static

barcodes defining a clone was determined via hierarchical clus-

tering and custom pipelines (STAR Methods). Cells were then

sorted into each clone based on their static barcode sequences,

permitting even cells with missing barcodes to be assigned to

the appropriate clone while also enabling explicit multiplet

detection and filtration and resulting in only �0.5% unmatched

cells (M1, 0.54%, and M2, 0.51%) (Figure S2J). For M1, an

average of 3.7 of a possible 5.9 barcodes were recovered per

cell, while recovery for M2 was on average 1.7 of a possible

2.5 barcodes (Figure S2J). The lower number of barcodes per

cell in M2 likely contributed to its lower overall lineage recovery.

Clonal reconstruction revealed 95 distinct clones across the

two mice (Figure 2B), identified by 227 static barcodes (Fig-

ure S2J), indicating that less than 1% of all injected clones suc-

cessfully engraft. In contrast, in vitro experiments using the same

cells and a similar time course revealed that most cells (clones)

survive and form colonies on plates (Figures S1L–S1P). Thus,

cancer cells in this model experience dramatic bottlenecking

during in vivo engraftment.

Among the surviving clones, fitness differences were pro-

nounced and shaped population structure across sites (Figures

2B and 2C). In the primary tumor, the majority (>50%) of cells

came from a minority of clones (two clones in M1; six clones in

M2). Bottlenecking was even more extensive at metastatic sites,

wherein 80%–90% of cells typically came from a single clone

(Figures 2B and 2C), and both mice had one clearly dominant

clone across all disseminated sites (M1.1, M2.2). On the other

hand, 51% of clones (48/95) failed to metastasize at all, suggest-

ing that mutations in Kras and p53 alone do not ensure metasta-

tic success.
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Figure 2. Most metastases arise from rare, transcriptionally distinct clones

(A) Schematic of metastasis lineage tracing model.

(B) Clonal reconstruction using static barcodes, where clones are numbered by size in the primary tumor. Percentage contribution to each harvest site (circle size)

and enrichment compared with the primary tumor (circle color) are visualized. Top annotations show each clone’s Leiden transcriptional cluster and aggression

assignments as in (H) and (I), respectively.

(C) Cumulative fraction of each clone in each disseminated site (red) and primary tumor (black). Dotted lines represent the theoretical scenario of perfect clone

size equality.

(D) UMAP plot of 28,028 single cells containing both lineage and transcriptional information. Cells are colored by clone, with select large clones highlighted (as

mouse.clone).

(E and F) Two representative non-aggressive clones. (E) M1.13, (F) M2.10.

(G) A representative clone of medium aggression.

(H) Leiden transcriptional clustering of (D).

(I) Cells colored by clonal aggression.

(J) Number of non-, mid-, or high-aggression clones of 95 total.

See also Figures S3 and S4.
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We next asked whether clones were transcriptionally distinct.

Indeed, cells from the same clone clustered together in uniform

manifold approximation and projection (UMAP) space (Fig-

ure 2D). This was true of both large and small clones (Figures

2D–2G). Importantly, this finding extended to cells harvested

from different sites, suggesting that cells retain their clonal tran-

scriptional identity even after dissemination (Figure S3A). These

stable transcriptional differences may result from either epige-

netic drift or large-scale copy number changes, the latter

observed in our data (Figure S3B) and a hallmark of PDAC chro-

mosomal instability (Campbell et al., 2010).

Finally, we asked whether differences in clonal behavior corre-

sponded to transcriptional differences. While clones had distinct

transcriptional identities, we found that many overlapped in

UMAP space (Figures 2D–2G). Furthermore, 81% of clones

(77/95 across both mice) primarily resided in a single transcrip-

tional cluster, cluster 3 (Figures 2B and 2H). To relate transcrip-
tional state to tumor aggression, we derived a clonal aggression

scoring system based on clone size and dissemination (Fig-

ure 2B; STAR Methods). We found that 85% (81/95) of clones

were non-aggressive and were transcriptionally similar, occu-

pying a small region of cluster 3 (Figures 2I and 2J). Conversely,

highly aggressive clones were exceedingly rare but transcrip-

tionally divergent from other clones and one another (Figure 2I).

An EMT continuum associated with aggression
We sought to understand the specific transcriptional programs

associated with clonal aggression. While both mice were strik-

ingly similar in terms of clonal composition (Figure 2B), we initially

focused on M1, since we harvested cells from more sites and

recovered over twice as many barcodes per cell, which permits

more effective downstream subclonal reconstruction (Figures

S2J and S2K). Reanalyzing the M1 data apart from M2, non-

aggressive clones again appeared transcriptionally similar to
Cancer Cell 39, 1150–1162, August 9, 2021 1153
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Figure 3. A transcriptional EMT continuum in vivo

(A) UMAP plot of M1, colored by clone, with the five largest clones annotated. Circled region indicates the transcriptional space where smaller, non-aggressive

clones reside.

(B–G) Expression of canonical epithelial (B, Epcam; C, Muc1; D, Cdh1) and mesenchymal (E, Sparc; F, Zeb2; G, Col3a1) markers.

(H) Unbiased trajectory inference revealing a pseudotime axis matching EMT (pseudoEMT).

(I) Expression of (B–G) plotted along pseudoEMT and colored by clone as in (A).

(J) Hierarchical clustering of kinetic curves for the top 3,000 differentially expressed genes across pseudoEMT (q = 0, Moran’s I > 0.1). Gene clusters are labeled

from epithelial, E, to hybrid, H1–H4, to mesenchymal, M, based on expression across pseudoEMT. Gene set analysis using MSigDB Hallmarks for each gene

cluster (hypergeometric test, p < 0.05). Oxphos, oxidative phosphorylation.

(K) Significantly enriched motifs (hypergeometric test, p < 0.05) in promoters for each gene cluster, with canonical EMT master regulators highlighted.

See also Figure S5 and Tables S1–S3.
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one another (Figure 3A). Interestingly, these clones were en-

riched for expression of canonical epithelial markers, such as

Epcam, Muc1, and Cdh1 (Figures 3B–3D and S4A). Conversely,

mesenchymal markers, such as Sparc, Zeb2, and Col3a1, were

enriched in cells of the aggressive clone, M1.1 (Figures 3E–3G

and S4B). Loss of epithelial genes and gain of mesenchymal

genes are defining hallmarks of epithelial-to-mesenchymal tran-

sition (EMT) (Nieto 2013; Nieto et al., 2016).

EMT is a process of transdifferentiation, wherein epithelial

cells lose the properties of cell polarity and adhesion, while gain-

ing the ability to be motile andmigratory. In cancer, EMT is impli-

cated in invasion, metastasis, tumor stemness, plasticity, and

drug resistance (Nieto 2013; Nieto et al., 2016). EMT is primarily

a transcriptional process mediated by a group of key master-

regulator transcription factors (EMT-TFs) (Stemmler et al.,

2019). We observed elevated expression in aggressive clones

of 4/5 EMT-TFs, namely Zeb1, Zeb2, Snai1, and Snai2 (Figures

3F and S4C). Expression of Prrx1, an important regulator of

EMT in PDAC (Takano et al., 2016), was also increased.
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Traditionally, EMT is considered a binary process, where cells

switch from fully epithelial to fully mesenchymal. However,

recent studies have reported discrete intermediate EMT states

(Lu et al., 2013; Zhang et al., 2014; Hong et al., 2015; Pastush-

enko et al., 2018; Pastushenko and Blanpain 2019) or even a

continuum of states (Dijk et al., 2018; McFaline-Figueroa et al.,

2019). In our data, epithelial and mesenchymal UMAP regions

were not well segregated. Specifically, epithelial and

mesenchymal genes appeared to gradually lose and gain

expression as a function of distance from two extremes (Figures

3B–3G), supporting the view that a continuum of EMT states ex-

ists in vivo.

We leveraged our single-cell data to explore the transcriptional

correlates of EMT as a continuum. We performed unbiased tra-

jectory inference using Monocle 3 (Cao et al., 2019) and found

that the main trajectory in our data corresponded to the

observed EMT gene expression axis (Figure 3H). We named

this trajectory "pseudoEMT" (akin to pseudotime for develop-

mental trajectories) and placed the root of the trajectory, or the
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zero EMT state, at the most epithelial transcriptional region (Fig-

ure 3H). Hence, the expression of canonical epithelial markers

was highest at the root. We found that many genes, including

known epithelial or mesenchymal markers, rise and fall at

different rates across pseudoEMT (Figures 3I and S4E–S4G);

for example, many extracellular matrix genes activate only very

late in the trajectory (Figures 3I and S4F). In addition, numerous

genes, such asCd44 or Inhba, displayed unusual patterns, rising

and then falling or plateauing (Figure S4H). Expression of surface

markers previously used to stratify different EMT states in skin

and breast cancer mousemodels, Epcam, Vcam1 (CD106), Itgav

(CD51), and Itgb3 (CD61) (Pastushenko et al., 2018), followed a

similar pattern in our data (Figure S4D). However, except for

Epcam, expression of these markers was not highly variable

across the EMT continuum (Figure S4I), suggesting that at least

in PDAC, other genes might be more suitable markers for

stratification.

Plotting cells along pseudoEMT highlighted that smaller, non-

aggressive clones reside on the epithelial extreme, while more

mesenchymal states are restricted to large, aggressive clones,

such asM1.2 and particularly M1.1 (Figure 3I). As 27 of 29 clones

were highly epithelial, we suspected this to be the default tran-

scriptional state. To investigate this, we applied scRNA-seq on

5,932 in vitro cultured cells. We found that these cells comprised

40 distinct clones, none of which overlapped with any clones

recovered from in vivo metastasis experiments. In vitro cells

clustered homogeneously together and away fromM1 cells (Fig-

ures S5A and S5B) and had distinct markers from in vivo cells at

large (Figures S5C and S5G and Table S1). With regard to EMT,

in vitro cells were strikingly epithelial, often displaying higher

expression of epithelial markers, such asMuc1 and various ker-

atins (Figures S5D, S5E, and S5H), and conversely even lower

expression of mesenchymal markers, such as Zeb2, Vim, and

Fn1 (Figures S5F and S5I), compared with the highly epithelial

clones of M1. Thus, the baseline state of these PDAC cells ap-

pears to be highly epithelial with more mesenchymal EMT states

appearing only in vivo, as in M1.1 and M1.2.

To systematically characterize gene expression along EMT

in vivo, we identified the top 3,000 significantly differentially ex-

pressed genes across pseudoEMT (q� 0, Moran’s I > 0.1) (Table

S2). Hierarchical clustering of genes revealed six gene sets with

similar kinetics (Figure 3J). We classified these sets from most

epithelial to most mesenchymal as follows: epithelial (E); hybrid

1, 2, 3, and 4 (H1, H2, H3, H4); and mesenchymal (M) (Figure 3J;

Table S2). We then performed hypergeometric gene set enrich-

ment using the Molecular Signatures Database (MSigDB) Hall-

mark gene sets, which represent well-defined biological states

and processes (Figure 3J; Table S2). Concordant with the pseu-

doEMT trajectory, gene set enrichment indicated an EMT pro-

cess. Early clusters (E, H1) were enriched for apical surface

genes, consistent with epithelial cell polarity, while late clusters

showed gradually increased enrichment for EMT (H4, p =

33 10�6; M, p = 33 10�29). An inducer of EMT and metastasis,

TGF-b signaling (Zavadil and Böttinger 2005; Nieto et al., 2016;

Aiello et al., 2018), as well as Jak/Stat3 and Stat5 signaling (Liu

et al., 2014), peaked in the late hybrid state (H4) and tapered

off in the highly mesenchymal state (M). Other pathways pur-

ported to be involved in EMT, such as TNF-a (Wang et al.,

2013), Wnt (Kim et al. 2002; Basu et al., 2018), and Hedgehog
(Zhang et al. 2016), were also enriched only in H4 or M. Interest-

ingly, Notch signaling was recently implicated as a hybrid-EMT

stabilizer (Boareto et al., 2016; Bocci et al., 2017), consistent

with our finding that it was enriched only in H4.

Strikingmetabolic gene expression changes across EMTwere

also apparent (Figure 3J). Transitioning from early (H1, H2) to late

(H3, H4) hybrid gene clusters, we observed a strong shift from

enrichment of oxidative phosphorylation toward glycolysis,

potentially related to the enrichment of mTOR signaling in H2

(Ramanathan and Schreiber 2009). Consistent with metabolic

shifts, hybrid-EMT states also were highly enriched for prolifera-

tive gene sets, such as G2M, E2F, and mitotic spindle.

Specifically, enrichment began modestly in H2 and peaked

dramatically in H3 (G2M: H2, p = 3 3 10�2; H3, p = 1 3 10�20).

We next determined the cell-cycle phase of each cell (G1,

G2M, or S) to estimate the proportion of actively dividing cells

(S/G2M) across pseudoEMT (STAR Methods). Consistent with

Hallmark gene set enrichment, cell cycling peaked at EMT re-

gions representing the E and H2/H3 gene clusters (Figure S4J).

These hybrid-EMT proliferative changes were potentially driven

by Myc (Gabay et al. 2014), as Myc targets mirrored proliferative

gene set enrichment and cell cycling fraction (Myc-v1: H2,

p = 1 3 10�3; H3, p = 1 3 10�30).

We next asked which TFs might regulate progression through

EMT. Applying HOMER (Heinz et al., 2010) to promoters, we de-

tected 45 significantly enriched DNA-motif binding factors

across all gene clusters (Figure 3K). EMT master regulators,

Zeb1, Zeb2, Snai1, and Snai2, were enriched in early clusters,

E and H1. As EMT-TFs are primarily transcriptional repressors

that downregulate epithelial genes (Stemmler et al., 2019), this

finding illustrates our ability to discover regulators of the EMT

continuum. ETS-domain TFs, which are associated with metas-

tasis, invasion, and EMT (Hsu et al. 2004; Sizemore et al., 2017),

dominated the enrichment profiles of hybrid states H2 and H3.

Motifs bound by members of the Sox and Fox families were en-

riched in H4 and M, respectively. Sox TFs are often associated

with stemness-related processes (Grimm et al., 2019). Notably,

the six gene clusters have no overlapping genes, yet adjacent

clusters often displayed overlapping TF and gene set enrich-

ment, lending further support for a gradual continuum of EMT

transitions (Figures 3J and 3K). Overall, across this continuum

of 3,000 genes, we describe many classic EMT markers, path-

ways, and regulators, but we also find many less well-character-

ized genes and processes of potential interest for furthering

understanding of EMT in vivo (Table S2). In addition, we per-

formed a traditional Leiden clustering of M1 and found clusters

roughly matching the pseudoEMT spectrum (Figure S5J). We

identified the top markers by both cluster and clone, finding

that cluster markers were consistent with genes enriched across

corresponding EMT states (Table S3).

Reconstruction of subclonal diversity arising in vivo

Most cells in the mid-to-late EMT continuum came from a sin-

gle dominant clone, M1.1, preventing us from precisely corre-

lating transcriptional processes with tumor aggression and

highlighting the limitations of static barcoding (Figure 3I). We

therefore leveraged editing patterns of macsGESTALT evolving

barcodes to more precisely relate EMT and aggression at the

subclonal level.
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Figure 4. High-resolution subclonal lineage

reconstruction of metastatic cancer

(A) Percentage at which each base is mutated in

76,974 evolving barcodes across both mice.

Target-site spacers (light gray) and PAMs (dark

gray).

(B) Edit types observed at each target site.

(C) Example phylogenetic reconstruction of a small

clade within clone M1.1. CladeM1.1.310 (root node

in red) contains six distinct subclones composed of

58 cells from five different harvest sites. Each cell in

this clade has six evolving barcodes, illustrated by

white bars with edits colored as in (B). Cells with the

same barcode editing pattern are grouped into a

subclone (terminal black nodes) and dissemination

(EH) is quantified. For each subclone, individual cells

are stacked and colored by their harvest site on the

far right.

(D) Circle packing plot of the full single-cell phy-

logeny of M1, with clade M1.1.310 from (C) circled

in red. Outermost circles define clones, with the

first six clones labeled. Within each clone, nested

circles group increasingly related cells. Innermost

circles contain cells from reconstructed subclones.

Each point represents a single cell, colored by

harvest site.

(E) Cumulative fraction of each subclone of clone

M1.1 in each harvest site. Dotted line represents

perfect subclone-size equality.

See also Figure S3.
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We recovered a large number of edited and informative target

sites per cell, conducive to phylogenetic analysis. Altogether, we

recovered 384,870 CRISPR target sites, of which 96%were edi-

ted (Figure S6A). Editing was distributed across the length of the

barcodes with peaks at the expected Cas9 cut sites, 3 bp up-

stream of the protospacer adjacent motif (PAM) of each target

site (Figure 4A). Deletions predominated over insertions, as ex-

pected (McKenna et al., 2016; Raj et al., 2018; Bowling et al.,

2020), with an approximately equal number of single- and

multi-target deletions (Figures 4B and S6B). The average edit

size varied by edit type, with 11 bp for insertions, 18 bp for sin-

gle-target deletions, and 80 bp for multi-target deletions (Fig-

ure S6C). Multi-target deletions were of a large size range and

involved 2, 3, 4, or 5 target sites at frequencies ranging from

10% to 19% (Figures S6B and S6C). Individual target-site editing

rates varied between 89% and 99% (Figure 4B). On average, we

recovered 18.5 target sites (3.7 barcodes) per cell for M1 and 8.5

(1.7) for M2 (Figure S2J).

Intraclonal tree reconstruction was performed in three main

steps (Figure 4C). First, different barcodes from the same cell

were concatenated based on their static barcodes into a "bar-

code-of-barcodes," which contains all of the phylogenetic infor-

mation recovered for that cell. Second, cells with identically

edited barcodes-of-barcodes were grouped into subclones,

since they are indistinguishably close relatives. Third, phyloge-

netic relationships between subclones were reconstructed

based on edit inheritance patterns (Figure 4C). Subclonal meta-
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static aggression was quantified via

Shannon’s equitability (EH), a statistical

measure of dissemination across harvest
sites (STAR Methods). For example, a subclone found at only

one harvest site is not metastatically aggressive and has an EH

of zero.

We sought to understand the maximum number of cells that

could be uniquely tagged using our approach. With this in

mind, we first investigated the editing diversity of individual bar-

code integrants (Figure S6D). Examining 208 barcodes across

both mice, we found that the maximum number of unique editing

outcomes for a barcode scaled with the number of cells recov-

ered, but gradually peaked to around 400 unique outcomes

even for barcodes recovered in nearly 10,000 cells. Hence, in

these experiments where we recovered an average of 2.6 barc-

odes per cell, we can estimate maximum labeling at nearly 109

cells (400 editing outcomes ^ 2.6 barcodes * 95 clones).

In practice, we sampled a fraction of this theoretical space and

recovered 6,055 unique barcodes-of-barcodes, which, for effi-

cient phylogenetic reconstruction, we filtered to a total of 1,692

subclones, each with at least two cells for larger clones (R50

cells) or with any number of cells for smaller clones (Figure S6A;

STAR Methods). Due to a higher average number of barcode in-

tegrations per cell, M1 displayed greater reconstructive power

than M2. This was particularly apparent in the dominant clone

of each mouse, where M1.1 with seven barcode integrants had

601 subclones compared with M2.2 with only two integrants

and 110 resulting subclones. Notably, pairwise phylogenetic dis-

tances in the reconstructed trees were strongly concordant with

the corresponding edit distances between barcode-of-barcodes



A

B

C

D

E

Figure 5. Peak metastatic aggression corresponds to late-hybrid EMT states

(A and B) Circle packing plots of the phylogenetic structure of clone M1.1 with subclones colored by mean pseudoEMT (A) and by dissemination score (B).

(C) Relationship between metastatic dissemination and pseudoEMT for subclones from (A and B).

(D) Density along pseudoEMT of M1.1 cells and their increasingly ancestral (arrow) phylogenetic groupings, examples of which are highlighted in (A).

(E) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and patient enrichment scores for each pseudoEMT gene cluster using Cox regression

analysis, with the hazard ratio for each gene cluster displayed (*p < 0.05, dp < 0.1). Square sizes are inversely proportional to p value.

See also Table S4.
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alleles (Figure S6E), and more active target sites determined

earlier tree nodes (Figure S6F), suggesting that lineage relation-

ships between cells are accurately captured in our trees.

The full clonal and subclonal phylogenetic visualization of M1

data highlights the overwhelming proliferative and metastatic

dominance of clone M1.1 (Figures 4D and S6G). However, within

M1.1, we also observed vast heterogeneity with respect to sub-

clonal aggression and metastatic success. Most strikingly, the

same bottlenecking observed on the clonal level was also pre-

sent on the subclonal level within M1.1 (Figure 4E). Subclonal

bottlenecking further increased at metastatic sites, again mirror-

ing observations at the clonal level. Thus, cancer progression

appears to be defined by a state of constant selection, separate

from the effects of engraftment.

Late-hybrid EMT states are proliferatively and
metastatically advantageous
As the vast majority of EMT diversity was within M1.1 (Figure 3I),

we leveraged phylogenetic data to understand how this range of

intraclonal EMT states may relate to differences in subclonal

behavior. We calculated the mean pseudoEMT value for each

subclone and plotted this and subclonal dissemination (EH) for

clone M1.1 (Figures 5A and 5B). While M1.1 was highly mesen-
chymal compared with other M1 clones, many subclones within

M1.1 were actually quite epithelial. These epithelial subclones

were primarily small and non-metastatic (Figures 5A and 5B).

Interestingly, the same was true of highly mesenchymal sub-

clones. On the other hand, the largest and most disseminated

subclones appeared to express hybrid EMT states (Figures 5A

and 5B), providing direct evidence that EMT extremes are less

metastatic than hybrid states (Jolly et al., 2015; Nieto et al.,

2016; Lambert et al. 2017; Pastushenko and Blanpain 2019).

To precisely characterize where aggression peaked along the

EMT continuum, we mapped subclonal dissemination (EH) and

size along pseudoEMT (Figure 5C). We found that dissemination

gradually peaked around the H3 and H4 hybrid states (pseu-

doEMT score of 20–22) and then sharply declined at highly

mesenchymal states. Thus, late-hybrid EMT states aremetastat-

ically advantageous and are associated with specific prolifera-

tive, metabolic, and signaling processes (Figure 3J and Table

S2), as well as distinct regulatory binding factors (Figure 3K).

Notably, hybrid-EMT states appeared transcriptionally stable;

for example, a large, hybrid subclone often had close relatives

that were also large and hybrid (Figure 5A). To understand the

stability of EMT states, we plotted the distribution of cells,

subclones, and root clades along pseudoEMT (Figure 5D;
Cancer Cell 39, 1150–1162, August 9, 2021 1157
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STAR Methods). Root clades mark the first phylogenetic subdi-

vision within a clone and are hence an older subgrouping of cells

than a subclone. Examples of root clades and subclones are

highlighted in Figure 5A. Root clades exist at the time of dox initi-

ation (1 week post-orthotopic transplant), cells exist at the time

of harvest, and subclones in between; thereby we compared

different "levels" of ancestral groups. Moving from root clades

to cells, there was a shift from epithelial to hybrid states, sug-

gesting that while epithelial states are the prevailing ancestral

default, they are proliferatively andmetastatically disadvantaged

compared with hybrid states (Figure 5D). This intraclonal obser-

vation againmirrored findings at the interclonal level, whereM1.1

itself was dominant compared with all other clones, which were

generally highly epithelial. Therefore, ongoing natural selection of

rare, late-hybrid EMT states over predominating epithelial states

both permits rapid dissemination and forces continuous clonal

and subclonal bottlenecking.

As late-hybrid EMT states, namely the H3 and H4 gene clus-

ters, were profoundly associated with metastasis in our model,

we asked whether a similar trend might exist in human PDAC

(Figure 5E). Using The Cancer Genome Atlas (TCGA) matched

gene expression and clinical data, we found that the transcrip-

tional signature of the E, H1, and H2 gene clusters had no asso-

ciation with disease prognosis. However, patients enriched for

the H3 or H4 transcriptional signature had a significantly

increased risk of death, and this risk disappeared for the highly

mesenchymal cluster M (Figure 5E). Remarkably, these human

PDAC findings faithfully mirror the rise and fall of subclonal met-

astatic aggression along pseudoEMT in our model (Figure 5C).

As EMT is thought to play a role across many cancer types

(Nieto et al., 2016), we also examined whether our pseudoEMT

gene sets might predict survival in the other prevalent cancers

by mortality (Cancer Facts and Figures, n.d.): lung, colorectal,

breast, and prostate cancer. While colorectal, breast, and pros-

tate cancers were not significantly associated in either direction

with our PDAC-derived pseudoEMT gene sets, lung cancer dis-

played a pattern similar to that of PDAC (Table S4). Lung cancer

patients enriched for H4 had significantly worse overall survival,

while those enriched for M again trended toward better overall

survival. In summary, these findings highlight the clinical rele-

vance of late-hybrid states and emphasize the potential can-

cer-specific nature of EMT.

Evidence for interclonal propagation of S100 gene
expression
We also examined the lineage and transcriptional structure of

M2, which overall appeared strikingly similar to M1 (Figures

6A, 6B versus 3A, and S6G). As inM1, labeling the transcriptional

UMAP of M2 by clone highlighted that non-aggressive clones

occupy a similar transcriptional region, while rare metastatic

clones and one dominant clone occupy divergent transcriptional

regions (Figures 6B and S5K and Table S3). However, due to the

lower number of barcode integrants in M2.2 relative to M1.1 and

the resulting lower number of subclones reconstructed (Fig-

ure 6A versus S6G), we were unable to interrogate the dominant

clone of M2 in the same depth as M1.1. We instead broadly

asked what genes might be associated with subclonal dissemi-

nation (EH) in M2, by performing a regression of EH against sin-

gle-cell gene expression with adjustment for confounders
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(STAR Methods). We identified 973 genes positively associated

with dissemination and 1,037 negatively associated genes (q <

0.05) (Table S5). Promisingly, as in M1, genes positively associ-

ated with subclonal dissemination in M2 also predicted worse

overall survival in human PDAC TCGA data (Figure 6C), as well

as in human lung cancer, but not in breast, colorectal, and pros-

tate cancer (Table S5).

Meanwhile, among the genes most negatively associated with

dissemination were canonical epithelial markers, such as Ocln,

Epcam, and Lgals4 (Table S5). These epithelial genes presented

similar patterns of expression compared with that seen in M1.

Adhesion-encoding genes, Ocln and Epcam, were strictly con-

tained to non-aggressive UMAP regions in M2 (Figures 6D and

6E), as they were in M1 (Figures 3B and S4A), while Lgals4

was expressed slightly more broadly, just as it was inM1 (Figures

6F and S5E). Thus, the vast majority of clones in both M1 andM2

were non-metastatic and epithelial in nature. This finding,

together with our observation that these cells express epithelial

but not mesenchymal markers in vitro (Figures S5D–S5F and

S5H–S5I), further indicates that the default state is epithelial,

that epithelial markers are repressed in order to metastasize,

and that this process is rare.

As in M1, EMT-TFs, Prrx1 and Zeb2, were expressed inverse

to epithelial genes (Figures 6G and 6H). However, while most

aggressive clones in M2 displayed expression patterns similar

to M1 with regard to epithelial and mesenchymal genes, the

dominant clone, M2.2, was not entirely consistent with the ca-

nonical EMT axis observed in M1 (Figure 3J). Specifically, the

mesenchymal marker, Sparc, was expressed to a low extent in

non-aggressive regions but also in M2.2 (Figure 6I). Similarly,

the epithelial marker Muc1 was highly expressed both in non-

aggressive regions and in a large portion ofM2.2 cells (Figure 6J).

This was particularly apparent when comparing M2.2 to another

aggressive clone, M2.23 (Figures 2B and 6B), which displayed

more canonical and complete EMT, with high mesenchymal

gene expression (Figures 6G–6I) and nearly completely absent

epithelial gene expression (Figures 6D–6F and 6J). Indeed

when plotted together with M1, M2.23 cells clustered with the

more mesenchymal cells of M1.1 (Figure 2D), which may help

explain its aggressive but non-dominant phenotype (Figure 2B;

STAR Methods).

We sought to better understand the processes that underlie

dominance of M2.2 and aggression in M2 more broadly. Thus,

we narrowed the genes significantly associated with subclonal

dissemination to those that both were highly expressed and

had a strong association, leaving 355 genes (Figure 6K; STAR

Methods). Among the most negatively associated genes were

again epithelial markers, as well as genes such as Ctse, which

has been functionally shown to inhibit tumor growth and metas-

tasis (Kawakubo et al., 2007). Conversely, among the most posi-

tively associated genes were genes previously found to promote

TGF-b signaling, EMT, and metastasis in other cancers, such as

Ifitm1, Ifitm3, and Akr1b3, further highlighting the important role

EMT plays in promoting metastasis across both M1 and M2 (Yu

et al., 2015; Liu et al., 2019;Min et al., 2018; Schwab et al., 2018).

Notably, we found that the S100a gene family was 52-fold

overenriched among positively associated genes (hypergeomet-

ric test, p = 8 3 10�10) and completely absent from negatively

associated genes (Figure 6K). S100 proteins were recently found
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Figure 6. A process complementary to canonical EMT

(A) Lineage tree for M2 subclones, where branches and nodes are colored by clone and scaled by the number of cells they relate.

(B) UMAP of M2 cells, colored as in (A), with five large, aggressive clones labeled, as well as M2.1 (green), which was the largest clone in the primary tumor but

poorly metastatic. Circled region indicates the transcriptional space where smaller, non-aggressive clones reside.

(C) Relationship between PDAC patient survival (TCGA-PAAD, n = 173) and enrichment scores for genes associated with subclonal dissemination using Cox

regression analysis (**p < 0.01), with the hazard ratio displayed. Square sizes are inversely proportional to p value.

(D–H) Canonical epithelial (D, Ocln; E, Epcam; F, Lgals4) and mesenchymal (G, Prrx1; H, Zeb2) markers.

(I and J) Markers with inconsistent expression patterns in the dominant clone, M2.2 (I, Sparc; J, Muc1).

(K) Highly expressed genes ranked by association (q < 0.05) with subclonal dissemination.

(L) Aggregated single-cell gene expression of theS100a family for each clone, colored by aggression (as defined in Figure 2B) and grouped bymouse. Intramouse

comparisons between dominant/aggressive clones versus all others are indicated above each violin. Comparisons between mice for all clones (black) and only

dominant/aggressive clones (red) are indicated above the line (Welch’s t test, ****p < 0.0001, ***p < 0.001, ns, not significant).

See also Figure S6 and Table S5.
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to be the most abundant and overrepresented secreted factors

in PDAC compared with normal pancreas, in both human pa-

tients and mouse models (Tian et al., 2019). However, the spe-

cific functions of S100s in PDAC and other cancers are poorly

characterized. Some S100s, such as S100a4, are thought to pro-

mote metastasis via EMT and to directly mediate pseudopodia

and lamellipodia formation in order to drive cell migration and in-

vasion (Bresnick et al. 2015; Fei et al., 2017). Interestingly, S100s

are considered autocrine, paracrine, and even circulatory long-

distance signaling molecules that potentially propagate their
own expression and coordinate changes in the tumor and the

microenvironment both locally and systemically (Bresnick et al.

2015). However, studies have primarily focused on S100

signaling in the tumor microenvironment and have not assessed

how signaling spreads across different tumor subpopulations.

We leveraged our coupled lineage and transcriptional data

across 95 distinct cancer clones to investigate whether there

was evidence of S100 signal propagation in tumors in vivo. We

aggregated single-cell gene expression of the S100a family for

each clone grouped by mouse (Figure 6L). We found that M2
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clones had significantly higher expression of S100a genes

compared with M1 clones (Welch’s t test, p = 9 3 10�9) and

that this was also true when restricting comparison to only the

aggressive clones of each mouse (p = 2 3 10�5). Notably,

each of the 7 aggressive clones of M2 had higher S100 expres-

sion than any of the 29 clones of M1 (Figure 6L). As all clones

from both mice derive from the same starting population

in vitro and are largely unrelated with unique histories, as evi-

denced by their macsGESTALT static barcodes (Figure 2B) as

well as their distinct CNVs (Figure S3B), these findings present

clear evidence of S100 expression propagation across distinct

clonal tumor populations in vivo. Furthermore, aggressive clones

in M2 had significantly higher S100 expression than non-aggres-

sive clones (p = 63 10�4), while this was not the case forM1 (Fig-

ure 6L). Indeed, M2.2, the dominant clone of M2, which

displayed inconsistencies with regard to some canonical

epithelial and mesenchymal markers, had the highest S100a

expression of any clone across either mouse, suggesting that it

had achieved dominance by complementing canonical EMT

changes with high S100 expression.

DISCUSSION

To study cancer metastasis at high resolution, we developed

macsGESTALT, a multiplexed, inducible lineage tracer that can

be easily coupled with scRNA-seq. We applied macsGESTALT

to an in vivo model of pancreatic cancer metastasis and recon-

structed transcriptomic information, lineage history, and harvest

site for �28,000 single cells derived from nearly 100 clones.

These richly annotated cancer metastasis phylogenies can be

explored interactively at https://macsgestalt.mckennalab.org/.

Despite extensive investigation, the identification of recurrent

genetic drivers of metastasis has remained challenging (Hunter

et al., 2018). Here, despite using a metastatically competent

genetic model, we found that most clones in fact do not metas-

tasize, supporting the importance of transcriptional and

non-genetic processes in metastasis, such as acquisition of

late-hybrid EMT states or propagation of S100 expression. While

our approach enabled us to precisely map the association

between metastasis and EMT and thereby identify gene sets

predictive of human survival, further functional investigation of

specific EMT states is necessary (Zheng et al., 2015; Aiello

et al. 2017, 2018). Similarly, the S100 gene family appears to

play a number of important yet poorly understood roles in cancer

(Bresnick et al. 2015; Tian et al., 2019) and warrants further func-

tional dissection of its many distinct family members. In addition,

direct comparison of our data to scRNA-seq from human pa-

tients may shed further light on the relevance of our findings to

human disease.

In this study, we apply macsGESTALT lineage tracing to�100

clones across two mice and find both conserved and distinct

ways in which metastasis is achieved. We anticipate that future

studies will build on this work and exhaustively explore the full

landscape of possible paths to metastasis. macsGESTALT is

well suited to such a task, as its inducibility allows lineage tracing

to initiate at the optimal experimental time, here after tumor

engraftment. Alternatively, initiation can be coupled with specific

interventions, such as the administration of a therapeutic to

study chemoresistance. Future optimization of macsGESTALT
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may include editing rate titration, minimization of multi-target de-

letions, and coupling to other emerging technologies such as

signal recording. These technical advancements will enable

questions in cancer and stem cell biology to be investigated at

previously inaccessible levels of resolution and scale.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DMEM, High Glucose Fisher Scientific Cat#: 11-965-092

FBS Corning Cat#: 35-010-CV

L-Glutamine Invitrogen Cat#: 25030081

Penicillin-Streptomycin Invitrogen Cat#: 15140122

TrypLE Express Enzyme Thermo Fisher Scientific Cat#: 12605010

Collagenase IV Thermo Fisher Scientific Cat#: 17104019

Lipofectamine 3000 Thermo Fisher Scientific Cat#: L3000001

Lipofectamine 2000 Thermo Fisher Scientific Cat#: 11668030

Lipofectamine CRISPRMax Thermo Fisher Scientific Cat#: CMAX00001

G418 Invitrogen Cat#: 108321-42-2

Puromycin Sigma-Aldrich Cat#: P8833

Doxycycline Hyclate Sigma-Aldrich Cat#: D9891

BSA Sigma-Aldrich Cat#: A7906

DAPI Thermo Fisher Scientific Cat#: 62248

EDTA Invitrogen Cat#: 15575020

DNase I Sigma-Aldrich Cat#: D4263

ACK Lysing Buffer Quality Biological Cat#: 118-156-721

HBSS Invitrogen Cat#: 14175079

PBS Invitrogen Cat#: MT21-031-CM

Critical commercial assays

NEB Stable Competent E. coli NEB Cat#: 3040H

NEBuilder HiFi DNA Assembly Master Mix NEB Cat#: E2621

GeneArt Precision gRNA Synthesis Kit Thermo Fisher Scientific Cat#: A29377

NucleoSpin DNA RapidLyse Kit Macherey-Nagel Cat#: 740100.50

Agencourt AMPure XP Beckman Coulter Cat#: A63880

SPRI Select Beckman Coulter Cat#: B23317

TapeStation High Sensitivity D1000 ScreenTape Agilent Cat#: 5067-5584

TapeStation High Sensitivity D1000 Reagents Agilent Cat#: 5067-5585

TapeStation High Sensitivity D5000 ScreenTape Agilent Cat#: 5067-5592

TapeStation High Sensitivity D5000 Reagents Agilent Cat#: 5067-5593

Qubit 1X dsDNA HS Assay Kit Thermo Fisher Scientific Cat#: Q33230

NEBNext Multiplex Oligos for Illumina

(Dual Index Primers Set)

NEB Cat#: E7600S

HotStart ReadyMix Kapa Biosystems Cat#: KK2601

KAPA Real-Time Library Amplification Kit Kapa Biosystems Cat#: KK2702

MiSeq Reagent Kit v3 (600-cycle) Illumina Cat#: MS-102-3003

NovaSeq 6000 S2 Reagent Kit (100 cycles) Illumina Cat#: 20012862

Chromium Single Cell 3ʹ GEM, Library &

Gel Bead Kit v3

10x Genomics Cat#: PN-1000075

Chromium Single Cell B Chip Kit 10x Genomics Cat#: PN-1000074

Deposited data

Raw and processed transcriptome and

barcode data

This manuscript GEO: GSE173958

Analyzed lineage data This manuscript Mendeley Data: https://doi.org/10.17632/t98pjcd7t6.1

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

PDAC 6419c5 cells Li et al., (2018) N/A

macsGESTALT PDAC cells This manuscript N/A

293T-V7 cells This manuscript N/A

293T-V8 cells This manuscript N/A

Experimental models: Organisms/strains

Mouse: NOD scid Jackson Laboratory Cat#: 001303

Oligonucleotides

Primer pairs (see Table S6) This manuscript, IDT N/A

Recombinant DNA

pUltra-U6-gRNAs1-5 This manuscript N/A

PB-EF1a-Puro-V8.2 This manuscript N/A

pLJM1-EGFP-V7 This manuscript N/A

pLJM1-EGFP-V8 This manuscript N/A

pCFDg1-5 This manuscript N/A

pBS31-GFP-V8crRNAs-U6-tracr-Ub-M2rtTA This manuscript N/A

pUltra-U6-crRNAs-U6-tracr This manuscript N/A

p5xU6_5sgRNA-Hsp70-Cas9GFP-pA Raj et al., (2018) N/A

pBS31 Beard et al., (2006) N/A

pUltra Addgene Cat#: 24129

pLJM1-EGFP Addgene Cat#: 19319

Lenti-iCas9-neo Addgene Cat#: 22667

psPAX2 Addgene Cat#: 12260

pMD2.G Addgene Cat#: 12259

Super PiggyBac Transposase SBI PB210PA-1

Software and algorithms

R v4.0.2 R Core Team https://www.r-project.org/

10x Cell Ranger v3 10x Genomics RRID: SCR_017344; https://support.10xgenomics.com/

single-cell-gene-expression/software/pipelines/latest/

what-is-cell-ranger

Monocle 3 Cao et al., (2019) RRID: SCR_018685; https://cole-trapnell-lab.github.io/

monocle3/

Seurat v3.1.4 Stuart et al., (2019) RRID: SCR_016341; www.satijalab.org/seurat/

tidyverse v1.3.0 Wickham et al., (2019) RRID: SCR_019186; https://CRAN.R-project.org/

package=tidyverse

igraph v1.2.6 https://igraph.org/ RRID: SCR_019225; https://cran.r-project.org/web/

packages/igraph/

ggraph v2.0.5 https://ggraph.data-

imaginist.com/index.html

https://cran.r-project.org/web/packages/ggraph/

index.html

HOMER v4.11.1 Heinz et al., (2010) RRID: SCR_010881; http://homer.ucsd.edu/

singscore v1.8.0 Foroutan et al., (2018) https://www.bioconductor.org/packages/release/bioc/

html/singscore.html

survival v3.2-7 N/A https://cran.r-project.org/web/packages/survival/

index.html

inferCNV Trinity CTAT Project https://github.com/broadinstitute/inferCNV

Barcode alignment McKenna et al., (2016) https://github.com/mckennalab/SingleCellLineage/

TreeUtils McKenna et al., (2016) https://github.com/mckennalab/TreeUtils

Lineage processing and analysis This manuscript https://github.com/ksimeono/macsGESTALT &

https://doi.org/10.17632/t98pjcd7t6.1

Other

Online tree browser This manuscript https://macsgestalt.mckennalab.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris-

topher J. Lengner (lengner@vet.upenn.edu).

Materials availability
Materials and reagents used in this study are listed in the Key Resources Table. Reagents generated in our laboratory are available

upon request. The plasmids needed to implement macsGESTALT will be made available through Addgene.

Data and code availability
Raw and processed single cell lineage and transcriptional data are available through GEO: GSE173958. Further processed lineage

data files and corresponding analysis scripts and R Notebooks are available together in a coherent file structure through Mendeley

Data: https://doi.org/10.17632/t98pjcd7t6.1. R Notebooks and scripts alone are also available through Github: https://github.com/

ksimeono/macsGESTALT.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cell lines
All cells were cultured in a 5% CO2 incubator at 37

�C in culture media (High Glucose DMEM, 10% FBS, 1% glutamine with penicillin

and streptomycin). 293T cells were a gift fromDr. JeremeyWang at the University of Pennsylvania. Barcoded 293T cells for the gRNA

screen were produced by infecting with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 lentivirus at low MOI (MOI < 0.2) and sorted by fluo-

rescence-activated cell sorting (FACS) for GFP using a BD FACSAria II (BD Biosciences).

For the PDAC cells used to generate macsGESTALT PDAC cells, we selected the most metastically aggressive cell line (6419c5)

from a published library of clonal PDAC lines (Li et al., 2018), which were each derived from harvested KPCY tumors. While this cell

line originated from a single cell bottleneck during derivation, it had since been passaged �15x, thereby overtime in culture,

becoming effectively polyclonal at the point of macsGESTALT barcode delivery.

macsGESTALT components were introduced into PDAC cells in 3 steps: First, dox-inducible Cas9 was integrated with Lenti-

iCas9-neo (Addgene #22667) (Cao et al., 2016), and infected cells were selected for neomycin resistance via G418 for 7 d. Second,

the cells were infectedwith pUltra-U6-gRNAs1-5 at highMOI (MOI > 0.8), and the top 50%of GFP positive cells were sorted by FACS

using a BD FACSAria II. This step was repeated once to produce cells with high gRNA array expression to ensure a high editing rate.

This can be decreased to slow and spread the editing rate over time. Third, cells from the previous steps were barcoded by cotrans-

fecting PB-EF1a-Puro-V8.2 library and Super PiggyBac Transposase plasmid (SBI #PB210PA-1) at a 1:10molar ratio using Lipofect-

amine 3000 (Thermofisher). Barcoded cells were puromycin-selected for 7 d. To maintain diversity and limit leaky editing, cells were

expanded after withdrawal of purmycin and frozen down with minimal time in culture (< 7 d). For lineage tracing experiments, cells

were only expanded after thawing for 2-4 d as needed prior to orthotopic injection or experiment start.

Mice
NOD scid male mice were acquired from Jackson Laboratory. 10 week old mice were used for orthotopic injection. All mice were

maintained in a specific pathogen-free environment at the University of Pennsylvania Animal Care Facilities. All experimental proto-

cols were approved by and performed in accordance with the relevant guidelines and regulations of the Institutional Animal Care and

Use Committee of the University of Pennsylvania.

METHOD DETAILS

Plasmid design and construction
All Gibson assemblies were performed using NEBuilder HiFi DNA Assembly Master Mix (NEB #E2621) and were assembled at 50�C
for 60 min at appropriate molar ratios. For cloning, all PCRs were performed using HotStart ReadyMix (Kapa Biosystems #KK2601).

Restriction enzymes, instead of PCR, were used to linearize vector backbones to prevent backbone mutations. All bacterial trans-

formations were performedwith NEBStable Competent E. coli (NEB #3040H) and cells were grown at 30�C for 24 h, unless otherwise

noted. Final plasmid preps were performed with Zymopure II Plasmid Kits (Zymo Research #D4202). All regulatory, coding, and edit-

ing-related regions in final assembly products were validated by Sanger sequencing. All gene block sequences were ordered

from IDT.

V7 and V8 barcoding lentiviral transfer plasmids used for guide RNA array screening were constructed in 2-part Gibson assemblies

using pLJM1-EGFP (Addgene #19319) (Sancak et al., 2008) backbone digested with EcoRI + gene blocks for V7 or V8 barcodes to

make pLJM1-EGFP-V7 and pLJM1-EGFP-V8.

pUltra-U6-crRNAs-U6-tracr was constructed in a 3-part Gibson assembly using PacI linearized pUltra (Addgene #24129) (Lou

et al., 2012) backbone, a U6-driven array of 10 V8 targeting crisprRNAs (crRNAs) interspersed by tRNAs ordered as a gene block

(pUltra5-U6crRNA-GA1), and another gene block encoding a U6-driven tracrRNA (GA1-U6-tracr-pUltra3).
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The dox-inducible crRNA array plasmid, pBS31-GFP-V8crRNAs-U6-tracr-Ub-M2rtTA, was constructed in a 3-part Gibson assem-

bly using EcoRI linearized pBS31 (Beard et al., 2006), a gene block containing 10 V8 targeting crRNAs interspersed by tRNAs in the 30

of a GFP opening reading frame (ORF) (TP-gB-1), and a gene block containing U6-driven tracrRNA followed by Ubc promoter-driven

M2-rtTA with a V8 barcode of 10 targets in the 30 UTR (TP-gB-2). The barcode was excised for transient transfection gRNA screening

experiments by digesting with NsiI and religating the backbone.

p5xU6_5sgRNA-Hsp70-Cas9GFP-pA that had V7 gRNAs 5-9 each with a separate U6 promoter was a gift from J. Gagnon (Raj

et al., 2018).

pCFDg1-5 gRNA-tRNA array was constructed stepwise as previously described using pCFD5 (Addgene #73914) (Port and Bullock

2016) as a template and V8 targeting gRNAs.

pUltra-U6-gRNAs1-5 lentiviral transfer plasmid, which was used to make macsGESTALT PDAC cells, was generated in a 3-part

Gibson assembly using pUltra backbone linearized with PacI, a gene block with U6 promoter and gRNA 1 (pUltra5-U6-gRNA1),

and a PCR-amplicon, amplified from pCFDg1-5, containing gRNA-tRNAs 2-5 (gRNAs1-5-pUltra3), thereby producing a constitu-

tively-expressed five gRNA-tRNA array and a constitutive GFP selection marker.

PB-EF1a-Puro-V8.2 library cloning was performed as a 3-part Gibson assembly: 1) PB-CMV-MCS-EF1a-Puro (Systems Biosci-

ences PB-510B-1) was digested with SpeI and HpaI to excise its cargo and create a linear backbone. 2) EF1a promoter and puro

resistance gene were amplified from lentiGuide-Puro (Addgene #52963). 3) The V8.2 target array was ordered as a gene block.

This assembly produced the PB-EF1a-Puro-V8.2 vector. Then, the barcode library was generated via a 2-part Gibson assembly

using EcoRI linearized PB-EF1a-Puro-V8.2 and a random 10 bp containing staticID (static barcode) fragment, which was made

by annealing and extending a pair of oligos (targetbarcode-r: TTTGTCCAATTATGCTCGAGGTCGAGAATTNNNNNNNNNNCGTT

GATCGCACGCCA, targetbarcode-f2: TAGTTGGTTCCTACTGGCGTGCGATCAACG). The library was transformed into NEB

10-beta Electrocompetent E. coli (NEB #3020K), and the entire transformation was grown as a midi culture and prepped with Char-

geswitch Pro Filter Midi Kit (Thermofisher #CS31104).

Viral production
Lentiviruses were packaged in HEK 293T cells using psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) second generation

packaging and envelope plasmids. Viral supernatants were collected 2-4 d post-transfection and filtered through 0.45 mm filters.

Filtered supernatants were either stored at -80�C (never refrozen) or used fresh to infect cells.

Guide RNA array editing screen
293T cells barcoded with pLJM1-EGFP-V7 or pLJM1-EGFP-V8 lentivirus were transiently transfected with different combinations of

plasmids to test gRNA array editing efficacy. Barcoded cells plated at 250,000 cells per well of 6-well plates, and transfected the

following day with Lipofectamine 2000 (Thermofisher #11668030). 1.5 mg of px330 was used in each well (except no-transfection

and pUltra-only control wells). All wells receiving a gRNA array plasmid were also transfected with a 1:1 molar amount of the appro-

priate gRNA plasmid compared to px330. Dox was initiated where appropriate the day after transfection. Additionally, as a positive

control, one well received px330 and in vitro transcribed (IVT) gRNAs. Guide templatesmatching the V8 target sites were constructed

and transcribed using GeneArt Precision gRNA Synthesis Kit (Thermofisher #A29377); gRNA 6 and 7 IVT reactions failed and these

guides were excluded from further steps. IVT gRNAs were transfected using Lipofectamine CRISPRMax (Thermofisher

#CMAX00001) 24 h after px330 was transfected. Expression of plasmids containing fluorescent markers was confirmed by micro-

scopy. Cells were then allowed to expand and edit for one week and then harvested for library preparation and sequencing.

PDAC dox-induced in vitro editing experiments
PDAC cells were cultured in completemedia (DMEM, 10%FBS, 1%glutamine with penicillin and streptomycin). Dox-induced editing

checks of macsGESTALT PDAC cells were performed in two separate experiments: In the first experiment, cells were plated and

started on dox at 3 doses, 0, 0.1, or 2 mg/mL, with media change every other day. Cells were collected at 2 timepoints — after 1

and 2 weeks of dox exposure — and harvested for library preparation and sequencing. In the second experiment, cells were kept

on 6 different dosages of dox, 0, 10, 50, 100, 500, or 1,000 ng/mL, for 2 weeks and harvested for library preparation and sequencing.

Prior to the start of editing experiments, cells experienced 3 weeks of culture time during barcode drug selection, expansion, and

freeze/thawing, during which time background editing from leakiness was possible.

Bulk DNA barcode sequencing
For all bulk DNA editing experiments, approximately one million cells were harvested per condition, washed, pelleted, and genomic

DNA extracted with the NucleoSpin DNA RapidLyse Kit (Macherey-Nagel #740100.50). Genomic DNA was normalized to 30-50 ng/

mL for each sample. All PCR reactions were performed using SYBR-containing master mix from the KAPA Real-Time Library Ampli-

fication Kit (Kapa Biosystems #KK2702) and terminated in the mid-exponential phase to limit over-amplification. AMPure beads

(Agencourt Beads, Beckman Coulter #A63880) were used at a ratio of 1.5x to purify products after all PCR reactions. Barcodes

were amplified from genomic DNA in a nested approach and sequencing adaptors, sample indices, and flow cell adaptors were

added by a series of subsequent PCRs. For 293T samples containing pLJM1-EGFP-V7 or pLJM1-EGFP-V8, barcodes were ampli-

fied and adaptors added in a series of 3 PCRs. For PDAC samples containing PB-EF1a-Puro-V8.2, barcodes were amplified and

adaptors added in a series of 4 PCRs. Primer sequence, purpose, and annealing temperature for all PCRs in both of these library
e4 Cancer Cell 39, 1150–1162.e1–e9, August 9, 2021



ll
Article
preparations are included in Table S6. In all cases, 250 ng of genomic DNAwas loaded into a 50 mL PCR. Sample indices were added

using NEBNext Multiplex Oligos for Illumina (Dual Index Primers Set – New England Biolabs). The concentration of final amplicons

was measured by Qubit and the length validated by TapeStation HSD1000 prior to sequencing using Illumina MiSeq 600-cycle v3

Reagent Kits with the following run parameters: Read 1 - 301 cycles, i7 index - 8 cycles, i5 index - 8 cycles, Read 2 - 301 cycles.

Bulk sequencing data for all samples was aligned and processed as previously reported (McKenna et al., 2016) and available as a

docker image https://github.com/mckennalab/SingleCellLineage/, with the UMI option set to FALSE (no UMI used). Output files

were used for generating visualizations using the R programming language.

Limiting dilution PDAC experiments
macsGESTALT PDAC cells were plated in a limiting dilution of approximately�5 or�100 cells per well in a 48-well plate. Single cells

gave rise to colonies and expanded. Cells were all allowed to expand without split for 2 weeks. The 100-cell wells were confluent and

overgrown after 1 week in culture. The 5-cell wells were approximately 80-90% confluent at 2 weeks. At 2 weeks, a healthy, repre-

sentative well from each condition was selected and passaged at a 1:2 split into a well of a 6-well plate. After 3 d, cells were harvested

and dissociated using 500 mL TrypLE (Thermofisher #12605010) for 3-5min. Reactions were neutralized with 3mL culturemedia. Cell

clumps were further dissociated by gently pipetting up and down 10x with a p1000, and then cells were centrifuged at 250g for 5 min.

Cells were gently resuspended with a p1000 in 1 mL culture media, filtered through a 30 mm strainer, ensured to be in a single cell

suspension under a light microscope, and countedwith a hemocytometer. Cells were washed twicewith 1mL cold HBSSwith 0.04%

BSA (centrifuged at 150g for 3 min each time). Cells were filtered again through a 30 mm strainer and resuspended in cold HBSS with

0.04%BSA at a concentration of 700 cells/mL. Cells were counted again with a hemocytometer to ensure accurate concentration. For

the 5-cell dilution sample, 8,000 cells were loaded on 10x (Chromium Single Cell 3’ Reagent Kits v3) targeting 5,000 cell recovery; for

the 100-cell dilution sample, 16,000 cells were loaded targeting 10,000 cell recovery.

Orthotopic metastasis model
macsGESTALT PDAC cells were thawed and expanded for 2-4 d prior to dissociation and orthotopic injection into 10 week old NOD

scid male mice. Approximately 30,000 PDAC cells were injected into the surgically-exposed tail of the pancreas, as previously

described in detail (Aiello et al. 2016). Cells were allowed to engraft; then doxycycline was initiated 1 week post-injection and given

continuously in the drinking water at 1 mg/mL. Mice were harvested at approximately 5 weeks post injection, once reaching

morbidity. Primary tumor (PT), liver, lung, peritoneal macrometastases, and surgical-site lesions were sorted for both mice. Due

to a more productive blood-draw, circulating tumor cells (CTCs) were captured for M1 but not M2. Additionally, the surgical-site

lesion, which is similar in size and location to other peritoneal macrometastases, was processed separately in M1 but not M2..

Blood harvest and preparation
When harvesting tissues, blood was extracted first via cardiac puncture using a 25 gauge 5/8 needle with 1 mL syringe attached. A

successful blood draw was 400-700 mL, which was immediately transferred to a FACS tube containing 4% sodium-citrate in Milli-Q

water. This was pelleted at 500 g for 5 min and red blood cells were lysed by resuspension in 2 mL ACK (Ammonium-Chloride-Po-

tassium) buffer and incubation for 5 min at room temperature. 3 mL PBSwere added and themix was pelleted at 500 g for 5 min. Red

blood cell lysis was repeated 2 times. Finally, cells were resuspended in 400 mL of cold FACS buffer (PBS, 2% FBS, 1 mM EDTA, 40

ug/mL DNase) with DAPI and strained through a 35 mm filter for FACS.

Macro lesion harvest and dissociation
Primary tumor and macrometastases (metastases that could be manually handled, including surgical-site lesion) were excised from

surrounding tissue, removing asmuch normal surrounding tissue as possible. All macrometastases from amousewere processed as

one sample. Samples were then transferred to a 6-well plate and washed with cold PBS 3x. Samples were minced, then transferred

into 10 mL of DMEM containing 2 mg/mL collagenase IV plus 40 mg/mL DNase and incubated in a 37�C shaker for 30 min. Cells were

isolated by physical dissociation, filtered through a 70 mmcell strainer, and neutralized with cold DMEM. Samples were centrifuged at

350g for 5 min and resuspended in 500 mL cold FACS buffer (above). Cells were centrifuged at 350g for 5 min, resuspended in 1 mL

cold FACS buffer with DAPI, pipetted up and down 5x gently with p1000, and strained through a 35 mm filter for FACS. Samples and

cells were kept on ice throughout unless otherwise indicated.

Liver and lung harvest and dissociation
To minimize blood contamination in the liver and lungs, 25 mL of cold PBS was perfused into the right ventricle of the heart (after

blood draw from the heart). The entire liver (any macrometastases near the liver surface were completely excluded) and lungs

were excised and processed identically to PTs, until immediately following the 30 min shaking digestion step. Here, samples

were filtered through 100 mm cell strainers and then neutralized and centrifuged as with PTs, except 250g was used instead of

350g for centrifugation steps.

Liver samples were resuspended and further digested in 5 mL TrypLE for 5 min at 37�C. Digestions were neutralized with cold

DMEM + 10% FBS, centrifuged at 250g for 5 min, resuspended in 3 mL ACK, and incubated for 3 min at RT. Liver reactions were

neutralized with cold PBS, centrifuged at 250g for 5 min, resuspended in 5 mL cold FACS buffer with DAPI, pipetted up and

down 5 times gently with p1000, and strained through a 35 mm filter for FACS.
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Lung samples were processed identically to liver samples except the order of ACK and TrypLE digestion steps was reversed (ACK

before TrypLE). Additionally, lung samples were much smaller than liver samples and were thus only resuspended in 500 mL of cold

FACS buffer with DAPI for FACS. Both liver and lung samples were kept on ice throughout unless otherwise indicated.

Cancer FACS sorting and 10x Chromium loading
Cancer cells were isolated from dissociated tissues via FACS using a BD FACSAria II. After gating for singlets and live cells, GFP+

cells were sorted, thereby purifying PDAC cells from normal cells. For samples with a high yield of cells (PT, macrometastases, sur-

gical-site), 30-35,000 cells were sorted on the purity setting. For each of the lung, liver, and blood samples, the entire sample was

sorted on the yield setting to recover as many GFP+ cells as possible. The liver for M1 was stopped with 20% of the sample volume

remaining due to excessively long sorting time. Cell numbers recovered for lung and liver were similar for each mouse (M1 liver:

22,000 (80% of total), M2 liver: 30,000, M1 lung: 1,000, M2 lung: 1,500).

After sorting, all samples were passed through a 30 mm filter and then centrifuged at 500g for 5 min and checked for visible pellets.

Supernatant was removed to leave 20-30 mL of solution to not disturb the pellets. Remaining volume was measured and raised to

50 mL total by adding a 1:1 mixture of cold FACS buffer (without DNase) and nuclease-free water. 46.6 mL of these samples

was loaded for 10x (Chromium Single Cell 3’ Reagent Kits v3), thereby superloading some lanes with up to 25-30,000 cells

(macsGESTALT single cell barcode sequencing allows explicit detection ofmultiplets, see Figure S2J and STARMethods subsection

"Clonal reconstruction and multiplet elimination").

Single cell transcriptome sequencing
Single cell RNA-seq libraries were prepared as in the 10x Chromium Single Cell 3’ v3 user guide (Rev A) until Step 2.3. After cDNA

amplification, the 100 mL cDNA PCR was split 50:50 for separate barcode and transcriptome library preparation. Transcriptome

library construction continued as in the 10x user guide instructions. Indexed and pooled single cell transcriptome libraries for

each mouse were sequenced separately on the NovaSeq 6000 System with S2 100-cycle kits.

Single cell barcode sequencing
For all single cell barcode PCRs (as for bulk DNA barcode PCRs), SYBR-containing master mix from the KAPA Real-Time Library

Amplification Kit was used, and PCRs were stopped in mid-exponential phase. All primers were used at 10 mM. Primer sequence,

purpose, and annealing temperature for all library preparation PCRs are included in Table S6.

The barcode split of the cDNA amplification reaction (from 10x Single Cell 3’ v3 Step 2.2) was purified via 1.2x SPRI Select (Beck-

man Coulter #B23317). cDNA products were eluted in 40 mL of EB. Concentrations were measured by Qubit, and 2 ng/mL dilutions in

EB were created for each sample. Barcode amplification and adaptor and sample index addition were performed in 2 sequen-

tial PCRs.

Barcodes were selectively amplified by PCR1. Here, 50 ng of each purified, diluted cDNA amplification sample was used to tem-

plate a 100 mL PCR. After mixing, the reaction was split into 4 smaller reactions of 25 mL each for cycling. PCR cycling conditions were

1) 95�C for 3min, 2) 14-15 cycles of 98�C for 20 s, 65�C for 15 s, 72�C for 15 s. Sample reaction splits were re-pooled after cycling, and

products were purified with 0.9x SPRI Select and eluted in 60 mL EB.

Sample indices were added in PCR2. Here, 5-10 mL of the eluted products of PCR1 (1:12 or 1:6 overall dilution) were used to tem-

plate a 100 mL PCR, which was again mixed and split into four smaller reactions of 25 mL each. PCR cycling conditions were 1) 95�C
for 3min, 2) 6 cycles of 98�C for 20 s, 65�C for 15 s, 72�C for 15 s. Sample reaction splits were re-pooled after cycling. Dual-sided size

selection of complete barcode amplicons was performed using SPRI Select at an exclusion ratio of 0.5x and a selection ratio of 0.7x.

Amplicons were eluted in 32 mL EB.

Barcode library size and concentration were checked via TapeStation HSD5000 andQubit, respectively. Libraries were sequenced

using IlluminaMiSeq 600-cycle v3Reagent Kits with the following run parameters: Read 1 - 28 cycles, i7 index - 8 cycles, Read 2 - 500

cycles. M1 was sequenced with 3 kits. Since barcode recovery only increased 5-10% with two additional kits for M1, M2 barcode

library was sequenced with a single kit. Limiting dilution experiment libraries were also sequenced with a single kit.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell transcriptome data processing
Single cell transcriptome sequencing data was aligned and processed using 10x Cell Ranger v3.1 with the mm10 reference genome.

Filteredmatrices fromCell Ranger output were further processed using Seurat 3.1.4 (https://satijalab.org/seurat/) (Stuart et al., 2019).

All samples across both mice were merged into a single Seurat object. Low quality cells with%1,000 genes orR0.20 mitochondrial

gene fraction (mito fraction) were filtered out. Cell cycle score and phase were determined for each cell using the CellCycleScoring

function (https://satijalab.org/seurat/v3.1/cell_cycle_vignette.html).

Variable feature selection, scaling, and normalization were performed using SCTransform, while regressing cycle scores and mito

fraction. Dimensionality reduction by PCA was performed using the first 15 principal components (PCs). Cells were plotted in UMAP

space and a clearly-separated, large cancer cell cluster was observed, distinct from smaller clusters of contaminating normal cells,

mostly derived from samples sorted on the FACS yield setting. Contaminating normal cells were filtered out. 10x cell barcodes, here

referred to as cellIDs, for the cancer cells were then exported and used for initial macsGESTALT barcode data filtering.
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Single cell lineage data processing
Single cell barcode sequencing data was aligned, collapsed by UMI, and processed, as previously reported (McKenna et al., 2016)

via a pipeline available as a docker image here: https://github.com/mckennalab/SingleCellLineage/and described further here:

https://github.com/ksimeono/macsGESTALT. For each sample, stats files, containing aligned and collapsed edited barcode

sequence data, were extracted frompipeline output and used for clonal and subclonal analysis in R v4.0.2 and tidyverse v1.3.0 (Wick-

ham et al., 2019). Sample stats file for different harvest sites from a mouse were merged. However, each mouse and limiting dilution

experiment was processed separately.

To ensure high-quality barcode data was used for reconstruction, five initial filtering steps were applied: First, cellIDs not present in

the initial transcriptome cellID list (or v3 10x whitelist for limiting dilution experiments without transcriptional data) were filtered. Sec-

ond, transcripts (UMIs) with incomplete static barcode (staticID) sequences were filtered. Third, staticIDs with less than two UMIs per

cell were removed. Fourth, staticIDs with less than twoUMIs per cell on averagewere filtered. Fifth, staticIDs found in less than 5 cells

were filtered. Specific thresholds were determined by examining elbow plots of the relevant parameters (see https://github.com/

ksimeono/macsGESTALT for detailed R Notebooks with inline plots for each mouse).

Clonal reconstruction and multiplet elimination
Next, potential clonal groupings of cells based on staticID content (absence or presence) were identified by complete-linkage hier-

archical clustering. The staticID content of resulting clusters was examined, and clusters were found to be often improperly fractured

due to cells with undetected staticIDs. To identify real clones defined by sets of staticIDs, clustering results were pruned by excluding

clusters of less than five cells and staticIDs found in less than 20% of cells for a particular cluster (see https://github.com/ksimeono/

macsGESTALT for relevant visualizations and code). For clusters of less than 20 cells, staticIDs found in less than 35% of cells were

further excluded. Then, clusters that were either duplicates or subsets of other clusters in terms of their defining staticIDs were

collapsed. Finally, remaining staticID cluster sets were manually inspected for improperly fractured clusters, and any remaining

improper cluster splits were merged or collapsed (usually this was either not necessary or was only needed for a few clusters).

After cluster cleanup, staticID sets were extracted and used to assign cells. Cells were matched to clusters based on their stat-

icIDs. This process also served to explicitly identify interclonal multiplets, i.e. if a cell matched two or more clusters, this cell was

removed as a multiplet. This method performed well, as only a small fraction of cells, ranging from 0 to 0.54% across experiments,

went unmatched. Unmatched cells likely belonged to very small clones, only found in in vivo experiments. Furthermore, the percent-

age between mice was strikingly consistent (M1: 0.54% andM2: 0.51%), highlighting the reproducibility of the cancer model system

and reconstruction approach. Only matched singlets were retained for downstream analysis.

With this orthotopic model, it is possible that some of the cells injected can leak out of the pancreas during and after injection and

directly colonize the peritoneal cavity (although we sought to minimize this as previously described (Aiello et al. 2016)). To eliminate

any such cells from further analysis, we filtered clones that were detected in disseminated sites but not in the PT. This resulted in the

removal of a small number of cells (M1: 1.49% and M2: 0%) from a few clones only found in peritoneal macrometases and in the

surgical site lesion of M1.

In a true singlet, without genomic duplication of a barcode, each cellID-staticID pair should have a single mutagenized allele. To

detect potential intraclonal multiplets or duplicated barcodes, we calculated the number of unique mutagenized evolving barcodes

for a cellID-staticID pair, and mutagenized barcodes with less than 25% of the UMIs for that cellID-staticID pair were removed as

technical noise.

PDAC is known to undergo large-scale copy-number changes via chromosomal instability. We observed this in our CNV analysis

using InferCNV (Figure S3B). While most staticIDs had a median of one mutated allele per cell, some had a median of two and a

notably higher average. We speculated that these might be barcodes that resided in genomic areas that underwent copy number

gain at some point after barcode integration. StaticID that had an average of 1.3 or greater mutated alleles per cell were considered

to be potentially duplicated or triplicated.

Per 10x Chromium 3’ Single Cell v3 documentation (page 16), our overall expectedmultiplet rate for in vivo experiments with super-

loading was approximately 12% to 15%. Having explicitly detected and filtered interclonal multiplets, we next removed potential in-

traclonal multiplets. We filtered all cells with an average number of unique mutated alleles per staticID greater than 1.25, except for

cells containing a potentially duplicated staticID; for these cells, the threshold was less stringent, at greater than 3. This resulted in

appropriate overall multiplet rates of 12% for M1 and 15.7% for M2. Only true singlets were retained for further analysis.

After these filtering steps, clones that were detected in disseminated sites but not in the PT were again removed if present, and

clones were then numbered by their size in the primary tumor, largest to smallest. These rankings are used to refer to clones

throughout the paper with the mouse number appended, i.e. M1.1 or M2.14. These finalized clones were used for calculating clone

size and clone fraction for each harvest site. These final filtered, clone-assigned singlets were used for further single cell transcrip-

tional analysis.

Clonal aggression scores were estimated by giving points for size and fraction. For each non-PT harvest site where a clone was

present 0.5 points were awarded. If the clone’s fraction was higher at a disseminated site than at the PT than it was rewarded an

additional 1 point for that site. If a clone made up 5% or more of a disseminated site it received an additional 0.5 points for that

site and a further 0.5 points if it was 10% or more.

For limiting dilution validation experiments, cells were visualized by their static barcode expression using tSNE in Seurat. A static

barcode (rows) by cells (columns) expressionmatrix was generated. Just as in a regular transcriptome scRNAseq analysis, thismatrix
Cancer Cell 39, 1150–1162.e1–e9, August 9, 2021 e7

https://github.com/mckennalab/SingleCellLineage/
https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT
https://github.com/ksimeono/macsGESTALT


ll
Article
was used to generate a SeuratObject, where static barcodes were treated as features. The first 50 dimensions were used for tSNE

plotting.

Single cell transcriptional analysis
Transcriptional analysis continued using only singlets with quality barcode information (from above section). Seurat objects were

converted into cell_data_set objects, and Monocle 3 (https://cole-trapnell-lab.github.io/monocle3) was used for all further transcrip-

tional analysis. Preprocess_cds was run with top 20 dimensions (PCA) and align_cds was run with batch correction for harvest site

and regression for cycle scores andmito fraction. Cells were plotted in UMAP space and two clusters of low quality or contaminating

cells were removed. The first was a cluster of cells distinguished by high ribosomal fraction that was derived from cells of many clones

and harvest sites. These cells were likely technical artifacts observed from droplet library preparation. The second was a cluster of

cells with high hepatic gene expression. These cells derived from primarily the liver harvest sites and were most likely contaminating

tumor-liver multiplets that had escaped initial filtrations steps.

Following these filtrations, preprocess_cds and align_cds were run again as before but with the top 25 dimensions, as determined

by examining an elbow plot using plot_pc_variance_explained. Cells were plotted in UMAP space and clusters found using

cluster_cells. Further transcriptional analyses and visualizations on all mouse cancer cells together were performed using Monocle

3 functions and customR scripts as needed. For analyses on individual mice, cells were extracted and reprocessed as above but with

the top 20 dimensions by PCA.

Copy-number variation (CNV) analysis
InferCNV was used for single cell CNV analysis (https://github.com/broadinstitute/inferCNV/wiki). Default settings were used. Cut-

off = 0.1 was used, which is recommended by InferCNV for 10x data. Clones were treated as cell groups, with cluster_by_groups =

T. Clones with >200 cells were downsampled to 200. For clones %200 cells, all cells were included.

PseudoEMT analysis
PseudoEMT or pseudotime analysis was performed by finding a trajectory in UMAP space using learn_graph with default settings.

The root (most epithelial region) was placed where epithelial gene expression peaked. This additionally led to themost mesenchymal

region existing at the end of the trajectory, thus resulting in a pseudoEMT spectrum. To find genes whose expression varied signif-

icantly along pseudoEMT, graph_test was used with the ’principal_graph’ parameter selected. The top 3000 genes were retained, all

of which had q � 0 and Moran’s I > 0.1 (Table S2). For the top 3000 genes, kinetic expression curves were clustered into groups by

ward.D2 clustering using the R Pheatmap package, and the resulting tree was cut into six groups, which were named in order from

epithelial to hybrid to mesenchymal patterns of expression.

To find enriched transcription factor motifs within the six gene clusters, findMotifs.pl from HOMER was used with the provided

mouse promoter set. All default parameters were used, except for promoter region (-500, 50 bp from TSS) and background promoter

frequency (derived from all top 3000 pseudoEMT genes). Knownmotifs passing an enrichment cutoff of p < 0.05 were extracted. The

target genes of eachmotif were obtained using HOMER’s annotatePeaks.pl. Also for each pseudoEMT gene group, molecular signa-

ture database (mSigDB) gene set enrichment was determined using the hypergeometric test within HOMER.

Subclonal and phylogenetic reconstruction
Using filtered barcode data (from material and STAR Methods subsection "Clonal reconstruction and multiplet elimination"), dupli-

cated barcodes were removed entirely (this also removed any cells whose only recovered barcodes were duplicated). Cells with

greater than one uniquemutated allele per staticID were then filtered. For each cell in a clone, a barcode-of-barcodes was generated

by concatenating all evolving barcode alleles, ordered by staticID. If a cell was missing a staticID, ’UNKNOWN_UNKNOWN_

UNKNOWN_UNKNOWN_UNKNOWN’ was concatenated for that staticID to note the missing information for all five target sites.

Thereby, for an example clone defined by four staticIDs, every cell had four evolving barcodes concatenated in order and 20 target

sites overall, including any missing information.

Within each clone, cells with identical barcode-of-barcodes were then grouped into subclones of indistinguishably closely related

cells. To limit computational time required for downstream phylogenetic reconstruction of subclonal relationships, we pruned sub-

clones of only a single cell from the largest clones, i.e. clones with R50 cells. This greatly increased computational efficiency while

still retaining meaningful subclones.

Separate files were constructed for each clone, containing subclones with associated barcode-of-barcodes alleles. Phylogenetic

reconstruction of subclonal relationships was performed for each clone barcode-of-barcodes file separately via TreeUtils (https://

github.com/mckennalab/TreeUtils). TreeUtils performs reconstruction using Camin-Sokal maximum parsimony via the PHYLIP

Mix software package (Felsenstein 1989), as previously described in depth (McKenna et al., 2016).

Further analysis then resumed in R. Clone Newick files were extracted from TreeUtils output and converted to an edgelist data-

frame format. Clone edgelists were combined into a single large edgelist with a common root node (for each mouse separately).

A small fraction of clones that were entirely defined by staticIDs that had been genomically duplicated, andwere thus left out of phylo-

genetic analysis, were added back as a single node emerging directly from the root. At this point, cellIDs were added as terminal

nodes emerging from subclone nodes (or directly to clone nodes for clones that were left out of phylogenetic analysis due to barcode

copy gain). Cell nodes were then annotated with harvest site, transcriptional, and other information as needed. For circle pack or tree
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visualization, edgelist datafames were converted to igraph graph objects (https://igraph.org/r/) and plotted using ggraph (https://

github.com/thomasp85/ggraph).

Subclonal dissemination calculation
Shannon’s Equitability (EH) was used as a statistical measure of dissemination across harvest sites. To calculate EH, Shannon Diver-

sity (H) was first calculated as follows:

S is the number of distinct harvest sites analyzed (six for M1, four for M2). p is the sampling normalized proportion at which a sub-

clone is recovered from a harvest site, i.e. if a subclone is only found in the PT, pPT = 1, while p = 0 for all other sites. A subclone’s H is

then used to calculate its EH as follows:

EH therefore normalizes H by the number of harvest sites analyzed to exist between 0 and 1, with 1 being completely even dissem-

ination and 0 being no dissemination. For example, a subclone found at only one harvest site is not metastatically aggressive and has

an EH = 0.

PseudoEMT across ancestral relationships
Comparison of pseudoEMT for root clades, subclones, and cells was performed in R. To determine root clade pseudoEMT values, we

recursively calculated the weighted mean pseudoEMT value of ancestral nodes moving backwards along phylogenetic trees. Root

clades were the nodes immediately preceding the common root of M1.1. These clades are depicted by the outermost circles in the

circle packing visualizations of M1.1 (Figures 5A and 5B). The density of root nodes, subclones, and cells along the pseudoEMT axis

was then plotted as a ridge plot for comparison.

Identifying genes associated with dissemination
Regression of EH against single cell gene expression was performed while regressing out harvest site, cell cycle scores, and mito

fraction. Genes with q < 0.05 and greater than 1000 total transcripts across all cells were retained for further analysis. For analysis

of highly expressed and highly associated genes, only genes with greater than 50,000 total transcripts and an absolute estimate of

association greater than 0.1 were retained.

TCGA survival analysis
PseudoEMT genes (n = 3000, M1) and genes associated with dissemination (n = 2010, M2) were mapped to their human homologs

using getLDS() from the biomaRt package. All homologous genes were included. Preprocessed transcriptomic data (FPKM

abundance after upper quantile normalization; FPKMuq) ) from TCGA (https://www.cancer.gov/tcga) for patients with pancreatic

adenocarcinoma (TCGA-PAAD; n = 173), breast invasive carcinoma (BRCA; n=969), lung adenocarcinoma (LUAD; n=526), colon

adenocarcinoma (COAD; n=517) or prostate adenocarcinoma (PRAD; n=541) were obtained using the R package TCGAbiolinks.

Using the singscore package (Foroutan et al., 2018), patients’ enrichment scores were determined for either each pseudoEMT

gene cluster (E, H1, H2, H3, H4, M) or genes positively vs negatively associated with aggression. Patient survival (from the time of

pathological diagnosis) was obtained from TCGA clinical data for each cancer. Univariate and multivariate Cox regression analysis

was performed in the R environment (survival) to determine the hazard associated with either the pseudoEMT gene signatures (M1) or

dissemination (M2) for each cancer.Wald test, LLR and Score test were all significant (p<0.05), indicating the regressionmodels were

significant.

Pseudobulk and metagene analyses
The aggregate_gene_expression function from Monocle 3 was used to perform pseudobulk and metagene analyses. For testing

whether clones retained their transcriptional identity, pseudobulk samples consisting of clone and harvest site combinations were

generated, and only pseudobulk samples with >20 cells were used for further analysis. The entire transcriptome for each pseudobulk

sample was aggregated and used to hierarchically cluster samples via the Pheatmap package, with the ward.D2 clustering option.

ADDITIONAL RESOURCES

Interactive online browser of the lineage relationships reconstructed in this study: https://macsgestalt.mckennalab.org/.
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