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The human genome contains millions of candidate cis-regulatory elements (CCREs)
with cell-type-specific activities that shape both health and many disease states".

However, we lack a functional understanding of the sequence features that control the
activity and cell-type-specific features of these cCREs. Here we used lentivirus-based
massively parallel reporter assays (lentiMPRASs) to test the regulatory activity of more
than 680,000 sequences, representing an extensive set of annotated cCREs among
three cell types (HepG2,K562 and WTC11), and found that 41.7% of these sequences
were active. By testing sequences in both orientations, we find promoters to have
strand-orientation biases and their 200-nucleotide cores to function as non-cell-
type-specific ‘on switches’ that provide similar expression levels to their associated
gene. By contrast, enhancers have weaker orientation biases, but increased tissue-
specific characteristics. Utilizing our lentiMPRA data, we develop sequence-based
models to predict cCRE function and variant effects with high accuracy, delineate
regulatory motifs and model their combinatorial effects. Testing alentiMPRA library
encompassing 60,000 cCREs in all three cell types further identified factors that
determine cell-type specificity. Collectively, our work provides an extensive catalogue
of functional CREs in three widely used cell lines and showcases how large-scale
functional measurements can be used to dissect regulatory grammar.

Sequence variationin cis-regulatory elements (CREs) is a major cause
of human disease’. For example, the majority of genome-wide associa-
tion studies (GWAS) implicate noncoding haplotypes bearing distal
CREs, such as enhancers, in common diseases®*. However, predict-
ing the functional effects of nucleotide variation in CREs remains
challenging. One of the major limitations is the lack of a compre-
hensive functional delineation of the probably millions of CREs in
the human genome, many of which have tissue- or cell-type-specific
activity. This impediment also limits the ability to develop machine
learning tools that can predict tissue-specific CRE activity with high
precision.

Theemergence of genome-scale biochemical technologies to glob-
ally catalogue regions of open chromatin, transcription factor binding,
histone modifications and mRNA expression levels has provided a
framework to investigate gene regulatory and transcriptional land-
scapesinhundreds of celltypes®. These efforts have led to the discovery
of millions of cCREs in the human genome. However, these approaches

are overwhelmingly descriptive and cannot confirm that any given
cCRE s functional.

Massively parallel reporter assays (MPRAs) overcome these limita-
tions by testing thousands of sequences or variants for regulatory
activity in amultiplex fashion®. Previous work has utilized MPRAs or a
derivative assay, the self-transcribing active regulatory region sequenc-
ing (STARR-seq), to test large numbers of cCREs for regulatory activity
in human cells®°. However, these assays rely on transient transfection,
providing anepisomal (‘out of genome’) readout, and are mostly limited
toestablished cell types that can be robustly transfected and grownin
large quantities. To address this, we developed a lentiMPRA'™, which
enables reproducibility and multiplexability, extends to cell lines that
aredifficult to transfect such as neurons or organoids™?, and provides
an ‘in genome’ readout. As lentiviral integrations are random, lenti-
MPRA measures the functional effect of cCREs averaged across different
genomiclocations. lentiMPRA is more strongly correlated with ENCODE
annotations and sequence-based models'® and provides higher cell-type
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specificity predictions than episomal MPRA®™. Furthermore, systematic
comparison of lentiMPRA to eight other MPRA designs found strong
correlations with episomal MPRA and STARR-seq, but also differences'.
However, alimitation of lentiMPRA has been the number of sequences
or variants that could be tested in a single experiment™.

Here we applied an optimized lentiMPRA method and confirmed
the reproducibility and reliability of this technology to test more
than 200,000 sequences in a single experiment, which covers a
major fraction of cCREs for any given human cell type®. We applied
thismethod to substantially expand MPRA data for three ENCODE cell
types, human hepatocytes (HepG2), lymphoblasts (K562) and induced
pluripotent stem cells (iPS cells; WTC11), to examine the relative ori-
entation dependence of promoters and enhancers. In addition, we
tested 60,000 sequences in all three cell lines. With these data, we
characterize the activity effect of a core promoter region and train
models that can predict regulatory and nucleotide variant activity.
We identify both biochemical and sequence-based features that are
associated with cell-type-specific activity and provide a catalogue of
thousands of functional cCREs that advances our understanding of
genotype-to-phenotype associations in gene regulatory sequences.

Optimization oflentiMPRA

To scale up lentiMPRA", we revised our established protocol to
add random barcodes to the assayed sequences during the library
amplification step along with the minimal promoter' (Extended Data
Fig.1a). Subsequently, element-barcode associations were recon-
structed through sequencing (Extended Data Fig. 1b) and analysed
with MPRAflow’. To evaluate the robustness of this revised lentiMPRA
approach, we designed two pilot libraries (Supplementary Fig. 1a).
As DNase accessibility, centred on the midpoint of a peak, has been
shown to be a good predictor of regulatory elements” and MPRA
activity™'® we used it as our mainselection criteria for cCREs. The first
pilotlibrary encompassed 9,372 elementsin HepG2 cells and consisted
of: (1) 9,172 cCREs, centred at DNase hypersensitivity peaks that did
notoverlap promoters; (2) 50 positive and 50 negative controls of syn-
thetically engineered sequences (that is, engineered to have multiple
binding sites for known transcription factors or no known binding
sites, respectively)™; and (3) 50 positive and 50 negative controls of
naturally occurring enhancers (sequences observed to exhibit high
and low enhancer activity, respectively)'®. The second pilot library
encompassed 7,500 elements in K562 cells and consisted of: (1) 6,394
cCREs, centred at DNase hypersensitivity peaks that did not overlap
promoters; (2) 290 positive and 276 negative controls, identified by
coupling CRISPRinterference (CRISPRi) to single cell RNA-sequencing
measurements to identify functional enhancer-gene pairs®; (3) 250
negative controls derived from dinucleotide shuffling cCREs randomly
selected fromour library; (4) 50 positive and 200 negative controls of
naturally occurring enhancers (sequences observed to exhibit high
and low enhancer activity, respectively)'; and (5) 24 positive and 16
negative manually selected controlsinlociofinterest suchas a-globin,
B-globin, GATAI and MYC* (Supplementary Table 1).

These pilot lentiMPRA libraries were used to transduce cells in
triplicate and barcodes were sequenced at the DNA and RNA levels as
described™. Activity scores for each element were calculated as the
log,-transformed normalized count of RNA molecules from all bar-
codes corresponding to the element divided by the normalized number
of DNA molecules from all barcodes corresponding to the element
(Extended DataFig.1cand Supplementary Table 2). We observed arange
of 50-250 median barcodes per elementineachreplicate (Supplemen-
tary Fig.1b), providing alarge number ofindependent measurements
for each element, and activity scores (that is, log,-transformed RNA/
DNA ratios) that were highly concordant acrossreplicates (0.88-0.96
Pearson correlation; Supplementary Fig. 1c,d). Averaging across the
three replicates, the distribution of element activity scores was strongly
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divergentbetween most positive and negative controls (Supplementary
Fig.1le). An exception to this trend was observed for controls derived
from CRISPRi-based screening efforts?>?, which exhibited a slightly
weaker signal than positive controls, indicating that in our reporter
assays and outside their epigenetic context, they were still capable of
activating transcription (Supplementary Fig. 1e).

We next analysed both lentiMPRA libraries for functional enhanc-
ers. We found that 2,740 out of the 8,960 (30.6%) cCREs were more
active than negative synthetic controls® (in HepG2) and 3,703 out of
6,315 (58.6%) cCREs were more active than shuffled negative controls
(in K562) (5% false discovery rate (FDR)). However, the differences
in the proportion of active cCREs between cell types should not be
directly compared because the negative controls were different in
each case—one represents shuffled controls and the other does not.
Given the extensive previous work characterizing regulatory elements
in the B-globin locus and the inclusion of these sequences in our K562
library, we evaluated whether our MPRA results reproduced the findings
of previous studies for five previously characterized cCREs, termed
HS1-5 (Extended Data Fig. 1d). Consistent with previous work*?, we
observed that HS2 strongly activated transcriptionrelative to HS1and
HS3-5 (Extended Data Fig. 1d). In summary, these pilot experiments
confirmed the ability of our revised lentiMPRA protocol to measure
regulatory activity with high precision and reproducibility.

cCRE characterization with lentiMPRA

With our pilot libraries showing reproducible and robust results, we
next set out to test whether our revised lentiMPRA approach could
measure more than 200,000 sequences in a single experiment, com-
prising amajor portion of cCREs of any given human cell type. Using a
similar schemeasinour pilotlibrary'®, we sought to testa combination
ofallknown 19,104 protein-coding gene promoters as well as potential
enhancers (DNase peaks that are not near the promoter) in both ori-
entations (Fig.1a). In HepG2 cells, we tested all promoters and 66,017
potential enhancers; in K562 cells, we tested all promoters and 87,618
potential enhancers; in WTC11 cells, owing to their reduced transduc-
tion efficiency, we tested 7,500 promoters and 30,121 of 83,201 potential
enhancers (Fig.1band Methods). To further interrogate whether open
chromatinis required for transcriptional activation, we additionally
tested 14,918 heterochromatic regions in our K562 library, nominated
by the ENCODE consortium fromregions1Mb either side of the GATAI,
MYC, HBE1, LMO2, RBM38, HBA2 and BCL11A loci, which are known
human disease-associated and erythroid lineage genes. Collectively,
incorporating dinucleotide shuffled negative controls and other
positive and negative controls identified in previous studies'®**, we
designed and tested atotal of 164,307 elementsin HepG2 cells, 243,780
elementsin K562 cells and 75,542 elements in WTC11 cells (Fig. 1b and
Supplementary Table 3).

We observed 20-50 median barcodes per elementineachreplicate
amongall celltypes (Supplementary Fig.2a); elements supported with
atleast 10 barcodes (our minimum threshold) exhibited a substantially
reduced standard deviation across replicates (Supplementary Fig. 2b).
Elementactivity scores were also strongly concordant acrossreplicate
pairs, with Pearson correlations of 0.94 (HepG2), 0.76 (K562) and 0.76
(WTC11) (Supplementary Table 4 and Supplementary Fig. 2c-e). Aver-
agingacross thethreereplicates, we also observed strong correlations
among element activity scores between cCREs common to our pilot
and large-scalelibraries (Pearsonr =0.94inHepG2cellsand r=0.81in
K562 cells; Supplementary Fig. 2f). Similarly, visualizing the large-scale
K562 library in the HBEI locus (Extended Data Fig. 1d) and the other
six disease-associated loci (Extended Data Fig. 2 and Supplementary
Fig.3) confirmed strong agreement with the K562 pilot library, with the
large-scale library having greater density and highlighting additional
functional regulatory elements. The inter-replicate correlations for
bothlarge-scale libraries were lower than for the pilot libraries owing
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insertedinto areporter plasmid inboth orientations together with barcodes.
Thelibraries areinfected into cells using lentivirus and the integrated DNA

and transcribed RNAbarcodes are sequenced to quantify cCRE activity.

b, Composition of the HepG2,K562 and WTCl1 libraries. Thousands of potential

tothe trade-off betweenlibrary size and per element sequencing depth.
Tofurtherinvestigate this trade-off, we downsampled barcodes. Down-
sampling to 90% of the barcodes led to a near-perfect Spearman cor-
relation with respect to elementactivity scoresrelative to those derived
from the full dataset, whereas smaller proportions of the barcodes
degraded this correlation (Supplementary Fig. 2g). The distributions of
standard deviations for element activity scores across barcodesbecame
tighter when considering larger barcode downsampling proportions
(Supplementary Fig. 2h) and more replicates (Supplementary Fig. 2i).

The distribution of our fully processed element activity scores was
strongly divergent between positive and negative controlsin each cell
type, with the majority of promoters and potential enhancers spanning
the range in between the maximum positive control and minimum nega-
tive control scores (Fig. 1c). Promoters exhibited, on average, higher
activity scores and a bimodal distribution compared with potential
enhancers, which exhibited a right-skewed distributioninall cell types
(Fig. 1c). This bimodal distribution was likely to be caused by inactive
promoters exhibitinglittle to no activity inthe MPRA. We next analysed
alllibraries to empirically measure the proportion of functional cCREs
among each element type and cell type. Using shuffled controls as a
background set in each cell type and both orientations of measured
cCREs as aforeground set, we found that more than 50% of all promoter
sequences had regulatory activity (HepG2:11,367 out 0f 20,816 (54.6%);
K562:15,362 out 0f 29,376 (52.3%); WTC11: 5,038 out 0f 9,964 (50.6%);
5%FDR).For potential enhancers, we found as many as 42%to be active
(HepG2:50,714 out 0f 118,433 (42.8%); K562: 69,820 out 0f 169,260
(41.3%); WTC11: 11,861 out of 45,942 (25.8%); 5% FDR). An additional

Positive control @ Experimental group

enhancers and promoters, negative controls and positive controls are included
ineach library'®'>?*, Bars are coloured according to orientation tested and the
number oftested elementsis shown above the bars and coloured according to
elementtype.c, Violin plots of elementactivity, measured as log,-transformed
RNA/DNA ratios for cCREs and negative and positive controls. Promoter and
enhancer distributions were compared against the shuffled category using a
one-sided Wilcoxon rank-sum test, followed by Bonferroni correction (*P<107%).

power analysisindicated that our ability to detect functional regulatory
elements was plateauing after barcode downsampling, suggesting that
additional sequencing depth would be unlikely to lead to substantially
altered estimates (Supplementary Fig. 2j).

To assess whether our potential enhancers could be used to validate
significant enhancer-promoter interactions and/or predict CRISPRi
results, we intersected this set against those tested in three different
CRISPRi perturbation studies?>??, We examined the proportion of
our binned activity scores that were associated with significantly
regulating a promoter. We observed that the bins with the highest
activity had nearly a twofold increase in the proportion of validated
enhancers relative to bins with low activity (Supplementary Fig. 4a),
suggesting that our MPRA datasets could be used to predict sequences
with larger CRISPRi effects. Considering our activity scores alongside
activity-by-contact (ABC) scores®, we observed that our scores only
subtly improved performancein the task of discriminating significant
from non-significant enhancer-promoter interactionsintwo of these
three studies (Supplementary Fig. 4b). This small improvement in
performance may be partially explained by the observation that the
H3K27acsignal, whichis already consideredin the ABC model, has the
advantage of integrating local and distal regulatory information, which
may overshadow the consideration of an element’s local activity alone.

Promoter properties and orientation effect

Following procedures established in previous studies™, we utilized our
substantially expanded MPRA data to examine the relative orientation
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Fig.2|Properties and orientation dependence of promoters and
potential enhancers. a, Beeswarm plot of the Pearson correlation values
correspondingto each of the three pairwise comparisons among the three
replicates. The correlations are computed between observed cCRE activity
values for elements positioned either in the same (forward versus forward
(FvF) andreverse versus reverse (RvVR)) or opposite (forward versus reverse
(FvR) andreverse versus forward (RvF)) orientations. b, Scatter plot of the
averageactivity score for each cCREin the forward versus reverse orientation.
Regionsare coloured according to the density of data from light blue (low)
toyellow (high). Pearson (r) and Spearman (p) correlation values are shown.

¢, Box plots showing the distribution of strand asymmetries for promoters and
potential enhancers for each cell type. The centre line is the median residual
value and box edges delineate 25th and 75th percentiles, evaluated with a

dependence of promoters and enhancers. We quantified the degree
to which cCREs exhibited observable orientation dependence. In all
cell types examined, cCREs cloned in the same orientation exhibited
approximately 0.2 greater correlation among replicate pairs than cCREs
clonedinthe opposite orientation with respect to thereporter (Fig. 2a).
Averaging among replicates in HepG2 (the cell type with the highest
technical reproducibility amongreplicates), we detected a substantial
number of cCREs that exhibited greater activity in one orientation
relative to the other (Fig. 2b). These findings suggest that the activi-
ties of cCREs are largely, but not entirely, independent of orientation.

To further compare the properties of strand asymmetry between
promoters and enhancers, we analysed strand asymmetry distribu-
tions, defined as the absolute deviation between activity scores from
one orientation to the other. Consistent with previous studies”?, we
observed that promoters displayed slightly stronger strand asymme-
try effects relative to potential enhancers in all cell types examined
(Fig.2c), supporting the conclusion that they can contain transcription
factor bindingsites (TFBSs) that promote transcription unidirectionally
(or atleast more unidirectionally than potential enhancers).

Given theslightly enhanced orientation dependence of promoters,
we sought to evaluate the relationship between orientation-specific
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one-sided Wilcoxonrank-sumtest.d, The heat map indicates the correlation
betweenthe sense (s) and antisense (as) orientations of promoters and
endogenous gene expression levels measured in transcripts per million (TPM)
using RNA sequencing. The sizes of the circles are proportional to the Pearson
correlations. e, Scatter plot of activity scores for sense-oriented promoters
and endogenous gene expression levels for HepG2 cells. f,g, Volcano plots
indicating the enrichment of HOCOMOCO v.12* transcription factor families
inthetop1,000versusbottom1,000 promoters (f) and potential enhancers (g),
asranked by MPRA activity. Enrichment (measured as an odds ratio) and
Benjamini-Hochberg corrected g values computed using Fisher’s exact test.
Significant families above the Pvalue acceptance threshold (dashed horizontal
line) are labelled with arepresentative transcription factor family member with
thegeneral transcription factor family in parentheses.

promoter activity as measured by lentiMPRA and RNA sequencing
of endogenous genes. Across all pairs of cell types, MPRA measure-
ments from the same orientation displayed greater correlation than
measurements from the opposite orientation (Fig. 2d and Extended
Data Fig. 3d). Furthermore, when comparing against endogenous
expression levels, we observed that: (1) MPRA measurements from the
matched celltype displayed nearly the same correlations as those from
adifferent cell type; and (2) for each cell type, MPRA measurements
from the sense orientation displayed greater correlation to endog-
enous gene expression levels than promoters tested in the antisense
orientation (Fig. 2d and Extended Data Fig. 3d). To further evaluate
whether our promoter measurements explained cell-type-specific
gene expression, we computed the deviations of promoter activity
from their mean activity across cell types, as well as the correspond-
ing deviations for endogenous gene expression levels across the
same cell types. All cell types exhibited a Pearson correlation of less
than or equal to 0.11 between the two sets of measurements, sup-
porting our previous conclusions that enhancers, super-enhancers
and polycomb targeting are more likely to explain deviations of
endogenous transcriptional activity from core promoter activity®.
Collectively, these results suggest that core promoters possess weak



orientation dependence and when tested individually have little cell-
type specificity.

Although they correspond to a very short region of the promoter,
the 200-bp core of promoters centred at the TSS strongly recapitu-
lated endogenous gene expression levels (Pearson r = 0.55; Fig. 2e and
Extended DataFig.3a,b). Owing to the switch-like (thatis, on/off) state
of promoters, expression values fellinto abimodal distribution, which
slightly inflated these correlations. Removing all non-expressed genes
led to areductionin the correlation between MPRA measurements of
promoter activity and endogenous expression levels (Pearsonr = 0.43;
Extended Data Fig. 3c-g). Notably, in WTCI1 cells, we found a larger
cohort oftranscriptionally active genes whose promoters were inactive
in our MPRA (Extended Data Fig. 3b,g). Additional analysis revealed
that this observation could largely be explained by the use of alterna-
tive promoters in WTC11 cells, as the cap analysis of gene expression
(CAGE-seq) signalsinthe precise promoters tested were congruent to
MPRA activity in a similar manner among all three cell types (Pearson
r = 0.60; Extended Data Fig.3h-j). We performed two complementary
analyses to gain further insight into which transcription factor fami-
lies might bind to promoters exhibiting high expression versus those
promoting low expression and potential enhancers: (1) anenrichment
analysis using motifs annotated by HOCOMOCO v.12*° (Fig. 2f,g, Sup-
plementary Methods and Supplementary Table 5); and (2) de novo motif
discovery (Extended Data Fig. 4). Together, these analyses primarily
identified CpG-rich motifs as well as TFBSs for the ETV/ETS-related,
KLF-related, NFYA/B/Cand THAP11 transcription factors as being asso-
ciated withactive promoters (Fig. 2fand Extended Data Fig. 4a). These
motifs werein many cases different fromthose detected in high- versus
low-activating potential enhancers, for which factors such as HNF1B,
HNF4A, GATA1/2/6 and POU5F1-SOX2 emerged as cell-type-specific
activating factors and CTCF emerged as a general repressive factor
(Fig.2g and Extended DataFig. 4b). Although we did not anticipate such
short 200-bp promoter fragments to reflect endogenous expression
levels, collectively, these findings are consistent with previous models
that showed that CpG-rich promoters are associated with increased
gene expression; and that core promoters centred at the TSS possess
weak cell-type specificity, are information dense and strongly predict
gene expression levels®.

Sequence-based models predict activity

We next setout to train regression models to predict regulatory activity.
Webegan withabiochemical model (Supplementary Results) that used
a compilation of thousands of biochemical features extracted from
the three cell types (Supplementary Table 6). This model was able to
predict enhancer activities with high accuracy (Pearsonr=0.72) inall
three celltypes (Supplementary Fig. 5a) using atenfold cross-validation
approach onour data. Many biochemical features were strongly asso-
ciated with element activity (Supplementary Fig. 5b-e). The variable
feature count associated with each cell type led to the possibility of
biasing performance. However, training models that considered a
‘universal’ feature set, merging features fromall cell types, only weakly
improved performance (Supplementary Fig. 5f).

Sequence-based deep learning models* have demonstrated strong
performance relative to biochemical models*: and have been used
to predict MPRA data®?*, We benchmarked the performance of four
sequence-based models, trained on our MPRA data for each of the
three cell types: (1) MPRARN, a standard convolutional neural network
(CNN) (Supplementary Fig. 6); (2) MPRALegNet, a CNN based on the
LegNet architecture®, which uses EfficientNetV2-like convolutional
blocks (Fig.3a); (3) EnformerMPRA, which uses the CNN-transformer
architecture Enformer to generate a set of 5,313 predicted biochemical
features and then fits alasso regression to the MPRA data using these
features; and (4) SeiMPRA, which fits a similar lasso model consid-
ering 21,907 biochemical features predicted by Sei*”. Both MPRAnn

and MPRALegNet underwent optimization procedures to detect
hyperparameter and dataaugmentation settings thatimprove model
performance (Extended Data Fig. 5a,b, Supplementary Methods and
Supplementary Table1). Comparingthe performance to our biochemi-
callassoregression model on theidentical ten folds of held-out data, we
observed thatall sequence-based models outperformed the biochemi-
cal model, with MPRALegNet achieving the best performance in two
of the three cell types (Fig. 3b and Supplementary Table 8). Although
we include EnformerMPRA and SeiMPRA for comparison purposes,
we caution that they may have inflated performance because: (1) they
have a more than eightfold larger feature set than the biochemical
models and were trained on additional cell types and biochemical
marks; and (2) having been trained on nearly the entire genome, they
had the opportunity to observe biochemical marks associated with
elements in the test set. Moreover, sequence-based models probably
performed better than biochemical models because they have access
to the precise 200-bp sequence being tested, whereas biochemical
signals lack this degree of spatial resolution. Combining the folds of
data, our best model, MPRALegNet, achieved a performance (Pearson
r=0.83; Fig.3c) that was comparable to the technical noise of the assay
itself (that s, the replication of replicates; Supplementary Fig. 2c-e).
Nevertheless, downsampling analysis indicated that the model liesin
aregime that could still benefit from additional training data, given
the log-linear improvement in performance as a function of training
set size for each cell type (Extended Data Fig. 5c).

Given the favourable performance of MPRALegNet, we sought to
examine the principlesit had learned. We performed in silico mutagen-
esis (ISM) on the full set of MPRA data and then used TF-MoDISco-lite*
to identify motifs at variants with a large predicted effect size. This
strategy identified many housekeeping factors that are predicted to
activate transcription in all cell types, including NRF1, USF1/2, TFEB
and TFE3, JUN and FOS-related, KLF-related (KLF/SP), C/EBP-related
and ETS-related transcription factor families; additionally, we discov-
ered a motif for REST, a known transcriptional repressor® (Extended
DataFig. 6). Of note, CTCF was associated with both transcriptional
activation and repression, suggesting that it may impart differential
responses depending on sequence context. The top three TFBSs most
frequently associated with transcriptional activation among all cell
types were KLF-related, ETS-related and CTCF motifs; by contrast, the
top cell-type-specific TFBS were HNF4A/G in HepG2 cells, GATA-TAL1
dimer in K562 cells and POU5F1-SOX2 composite element in WTC11
cells (Fig. 3d). Overall, many motifs, including several unknown TFBSs,
were discovered that were overlooked by a classic motif-enrichment
analysis (Extended Data Fig. 4), supporting the complementarity of
the TF-MoDISco approach. To validate the implicated transcription
factors, we examined an MPRA dataset in which elements were tested
inthe context of transcription factor knockdown via CRISPR inhibition
in K562 cells*°. We were able to validate GATA1, NRF1, SP1 and FOSL1
as regulatory factors, with insufficient evidence for STAT1 and ATF4,
potentially owing to limited knockdown efficiency or compensa-
tory effects conferred by other transcription factor family members
(Extended DataFig. 7a).

MPRALegNet predicts TFBS combinations

To gaininsight into the nature of combinatorial TFBS effects learned
by MPRALegNet, we examined the top ten most abundant activating
TFBS motifs detected ineachcell type. First, we tested the effect of the
number of copies of homotypic (same) TFBSs on reporter expression. In
eachcelltype, MPRALegNet could accurately predict the activation pro-
file for elements containing between one and five sites of the indicated
TFBS (Fig.3e and Extended Data Fig. 7b—e). In most cases, transcription
factorsdisplayed close to a multiplicative (that s, log-additive) pattern
with respect to TFBS dosage*! (Extended Data Fig. 7c). However, sev-
eral transcription factor families, such as STAT (K562) and ETS-related
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Fig.3|Sequence-based models predictregulatory elementactivity.

a, MPRALegNetisadeep CNNtrained to predict cCRE activity from aninput
sequence of the tested element. b, Violin plots showing the performances of
sequence-based and biochemical models on ten cross-validation (CV) folds,
withimprovementrelative to another model evaluated using a one-sided,
paired t-test. B, biochemical; E, EnformerMPRA; L, MPRALegNet; N, MPRANn;
S,SeiMPRA; NS, not significant. ¢, Scatter plotsindicating relationship between
MPRALegNet predictions and observed element activity scores for each cell
type.d, Set of enriched motifs discovered by TF-MoDISco-lite. Left, top three
motifs detected across multiple cell types. Right, top motif detected for each
celltype.e, Heat mapindicating the relationship between homotypic TFBS
dosage (n=1to 5 TFBSs) and the observed MPRALegNet-predicted response
inK562 cells. f, Box plots showing the full dosage-dependent distributions for
the STAT1/4/5A/5B transcription factor family, along with the expected effect

(WTC11), displayed sub-multiplicative patterns at the highest dosages
(Fig. 3fand Extended DataFig. 7e), indicative of a saturating expression
effect. Super-multiplicative (that is, cooperative) effects were also
observed for certain dosages, such as the increase observed fromone
to two sites for the STAT transcription factor family (Fig. 3f).

Next, we evaluated deviations from multiplicative effects for het-
erotypic (different) TFBS pairs, as quantified by an interaction term
when considering the subset of elements with: (1) asingle site to either
of the two transcription factors; or (2) co-occurring instances of both
TFBS*. Adjusting for possible confounding effects induced by the
presence of other transcription factors (Methods), we observed both
super-multiplicative and sub-multiplicative effects for different TFBS
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inthe scenario of either amultiplicative or additive model. The number of
elementsrepresentedineachgroupisindicated above the plot.g, Heat map
indicatinginteraction term coefficients reflecting super-multiplicative (red)
and sub-multiplicative effects (blue), for elements possessing theindicated
pairof heterotypic TFBSsin HepG2 cells. Coefficients fit to observed and
predicted values are shownin the top right and bottom left halves of the

heat map, respectively. h, Relationship of the distributions of observed

and MPRALegNet-predicted activity scoresin HepG2 cells for the subset of
elements possessing either zero or one TFBSs corresponding to the NFYA/C or
FOXD2 families, or one TFBS for both transcription factor families, adjusted for
potential confounding effectsinduced by the presence of other transcription
factors (Methods). Thered horizontal lineis the expected activity score under
amultiplicative model. Box centre lines and edges as in Fig. 2. Whiskers show
the mostextreme data point up toa maximum of 1.5x the interquartile range.

pairs in HepG2 cells, as indicated by positive or negative interaction
term coefficients, respectively (Fig.3g). The magnitude of these terms
was strongly correlated between the predictions and observations
(r=0.92), suggesting that MPRALegNet learned more complex com-
binatorial properties among TFBS pairs (Extended Data Fig. 7f). For
example, the co-occurrence of ATF3/FOS-JUN and FOXD2 sites led
to the strongest super-multiplicative effect (Fig. 3h); conversely, the
co-occurrence of HNF4A/G and NFYA/C sites led to asub-multiplicative
effect (Extended Data Fig. 7g). Similar findings were observed in both
K562 and WTCl1 cells (Extended Data Fig. 7h-I). Collectively, MPRALeg-
Net was able to model nonlinear interdependencies between TFBS
combinationsin all cell types.



Predicting fine-mapping and variant effects

We next examined MPRALegNet utility for genetic fine-mapping and
variant effect prediction. We examined all single nucleotide polymor-
phisms (SNPs) in linkage disequilibrium (LD) with lead SNPs derived
fromthe GWAS catalogue, initially intersecting the seven tiled disease
lociin our study (Extended Data Figs. 1d,2 and Supplementary Fig. 3).
Forevery SNPinLD, we predicted the difference between the reference
and alternative allele using our K562 MPRALegNet model. We found
several instances in which the predicted effect size was exceptionally
large. For example, the model predicted both gain-of-function and
loss-of-function (LOF) SNPs around RBM38 (rs2426715, rs376911010
andrs737092; Extended DataFig. 8a) and a LOF of a potential enhancer
withinanactivelentiMPRA sequence in the intron of LMO2 (rs75395676;
Extended Data Fig. 8b).

To further evaluate this fine-mapping prediction strategy, we
benchmarked model predictions against two complementary tasks.
First, we verified performance on variant effect data using six sets of
allele-specific variants (ASVs) found in chromatin accessibility (assay
for transposase-accessible chromatin with sequencing (ATAC-seq) and
DNase-seq) and transcription factor binding data (chromatin immuno-
precipitation with sequencing (ChIP-seq)) for HepG2 and K562 cells
available in the UDACHA* and ADASTRA databases**. The significant
ASVs provide information on variant effects, including the preferen-
tial transcription factor binding or chromatin accessibility as allelic
imbalance towards the reference or alternative allele. For all six tested
combinations of ASV sources and cell types, we observed significant
associations between the observed and predicted scores both before
and after excluding cases in which the ASV was non-significant or model
predictions were too uncertain (Fisher’s exact test odds ratios >1.5and
P <0.05; Fig. 4a and Supplementary Table 9). We conclude MPRALeg-
Net successfully recognizes allele-specific regulatory SNP effects in
matched cell types.

Next, we sought to further validate the accuracy of our variant effect
predictions by generating ISM scores for promoters (F9, LDLR and
PKLR) and an enhancer (SORTI) for which we previously performed
MPRA saturation mutagenesisin HepG2 (F9, LDLR and SORTI) or K562
(PKLR) cells®. Comparing MPRALegNet predictions for the PKLR pro-
moter to MPRA datarevealed that most of the relevant TFBSs (GATA3,
KLF9, SP5 and NFIB) could be detected, although the predicted effect
sizeswererelatively smaller for KLF4 and GATA2 (Fig. 4b). Collectively,
we observed a correlation of 0.49 for SORT1, 0.65 for PKLR, 0.66 for
LDLR and 0.51 for F9 between model predictions and observed data
(Extended Data Fig. 9), confirming that MPRALegNet, despite being
trained on cCRE activity, could partially model the regulatory effects
ofindividual genetic variants. These results were comparable to those
from Enformer® (0.63 for SORTI,0.83 for PKLR,0.62 for LDLR and 0.28
for F9). Combined, our results show how our models can be used for
the prediction of regulatory variant effects.

Characterization of cell-specific factors

Although our large-scale MPRAs focused on element activity within
each celltype, they did not directly evaluate the cell-type-specific activ-
ity of each element. We therefore designed alentiMPRA library to test
acommonsetofelementsinallthree cell types. Thislibrary consisted
ofaround 19,000 potential enhancers from each of the three cell lines,
sampled uniformly from previous large-scale MPRA experiments to
span a wide range of activity; a subset of promoters that exhibit high
expression variance as well as awide range of average expression among
cell types from our previous large-scale MPRA experiments; dinucle-
otide shuffled controls; and a set of positive and negative controls
using synthetic elements previously tested in HepG2 cells', or natu-
ral elements with evidence to exhibit K562-specific activity™ (Fig. 5a,
Supplementary Table 10 and Methods). Elements were largely tested

in a single orientation (sense orientation for promoters and forward
orientation for potential enhancers).

We observed 10-70 median barcodes per elementin eachreplicate
among all cell types (Supplementary Fig. 7a). Element activity scores
were strongly concordantacross replicate pairs (Pearson correlations
0f0.98 (HepG2),0.97 (K562) and 0.96 (WTC11); Supplementary Table 11
and Supplementary Fig. 7b-d). Averaging across the three replicates,
we observed strong agreement among element activity scores between
cCREs common to both our joint and large-scale libraries (Pearson
r=0.90 (HepG2), r=0.88 (K562), r= 0.83 (WTC11); Supplementary
Fig.7e). We observed the distribution of element activity scores to be
strongly divergent and weakly cell-type-specific between positive and
negative controls in each cell type (Supplementary Fig. 7f). Although
promoters and potential enhancers displayed significant activity inall
celltypes, the distribution of activities for potential enhancers derived
from the matched cell type was greater than those from unmatched
cell types (Supplementary Fig. 7f).

To further examine cell-type specificity, we evaluated the behaviour
of each element category in each pair of cell types. Promoters exhib-
ited the strongest correlation among cell-type pairs (mean Pearson
r=0.82); by contrast, potential enhancers displayed weaker corre-
lations when comparing the activity scores from the cell type from
which the enhancer was derived to those from a different cell type
(Pearsonr=0.32-0.51(HepG2),r=0.51-0.65(K562) and r = 0.64-0.65
(WTC11); Supplementary Fig. 8). Next, we evaluated the relationship
between DNase accessibility relative to MPRA activity in all three cell
lines. We observed that strong DNase accessibility signals were not a
prerequisite for MPRA activity. Forinstance, we found that sequences
with nearly absent DNase signal in K562 cells, but high DNase signal
inboth HepG2 and WTCl1 cells, could still lead to high MPRA activity
in K562 cells (Fig. 5b and Supplementary Fig. 9a). Further reinforc-
ing this observation, we observed that 15-25% of elements that lack
DNase signal were more active than shuffled negative controls (5%
FDR), although increased DNase signal was clearly associated with an
increased proportion of active elements (Supplementary Fig. 9b). Col-
lectively, our results show that promoters are less cell-type-specific,
whereas potential enhancers show stronger cell-type specificity, inline
with their presumed cell-type-specific functions*e.

We next sought tointerrogate the cell-type-specific activity of each
element. We performed a principal components analysis using our
matrix of element activity scores in three cell types and removed the
dominant principal component, which represented the ‘universal’
signal of element activity among cell types. An analysis of principal
components 2 and 3 (PC2 and PC3) revealed that promoters have a
slight bias towards expression in WTC11 cells, and both controls and
potential enhancers have a stronger bias towards greater expression
inthe cell type from which they were derived (Fig. 5¢). We computed
an element specificity score, which measures the deviation of each
element from its mean activity across cell types. These scores reca-
pitulated the expected patterns of enrichment or depletion of element
activity for different element categories, with HepG2 and K562 controls
showing strongrelative activity in their respective cell types; potential
enhancers showing strong relative activity in their respective cell types;
and promoters and negative controls showing weakly stronger activity
in WTCl1 cells relative to others (Fig. 5d and Supplementary Fig.10). A
possible explanation for the stronger activity of negative controls in
WTCI11 could be that stem cells tend to exhibit a more globally open
chromatin state*, making them susceptible to greater levels of back-
ground transcription relative to other cell types.

We next benchmarked the performance of biochemical and
sequence-based models in predicting our lentiMPRA element speci-
ficity scores. Consistent with previous results, a multi-task version of
MPRALegNet outperformed the biochemical model and EnformerM-
PRA outperformed both MPRALegNet and the biochemical model for
eachofthethreecelltypes (Pearsonr= 0.81for EnformerMPRA; Fig. 5e
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Fig.4| MPRALegNet variant effect prediction. a, Scatter plots of predicted
variant effects and observed allele-specific differences detected in ChIP-seq,
ATAC-seqand DNase-seqdatainK562and HepG2 cells. Indicated are the number
of casesinwhichthe predictions and observations are concordant (C; blue),
discordant (D; red), or not considered (grey) because either the ASVFDR > 0.05
or the model predictions are too uncertain (Pvalue > 0.05; Supplementary
Methods). The corresponding odds ratio (OR) isalso indicated (Fisher’s exact

and Supplementary Table 12). Using TF-MoDISco-lite*®, we identified
cell-type-specific motifs learned by MPRALegNet, detecting 21 motifs
to be associated with cell-type-specific activityin HepG2 and K562 cells
and 12 motifs in WTCI11 cells (Extended Data Fig. 10). Individual tran-
scription factorslinked to the top three ranked cell-type-specific bind-
ing motifs from each cell type also exhibited strong cell-type-specific
expressioninthe expected cell types; additionally, CTCF showed weakly
enriched expressionin WTC11 (Supplementary Fig.11). Itisimportant to
note thatthetranscriptionfactorstested here donot representacom-
prehensive set of transcription factor family members that recognize
the same motif, and that other untested family members might further
explain the cell-type specificity of the observed motif.

Discussion

Large-scale MPRA datasets are available for other cell lines® . How-
ever, they are primarily tested via episomal STARR-seq, require avery
large number of cells, provide an episomal readout and tend to use a
strong promoter toincrease the ability to detect activity’. By contrast,
our modified lentiMPRA provides large functional datasets with an
‘in genome’ readout. The ability to systematically test thousands of
cCREs in an unbiased manner for a given cell type allowed us to iden-
tify predictive biochemical and sequence-based features for each cell
type with high confidence. However, although the number of tested
sequences was high, many additional cCREs may have been omitted
inour annotations and subsequently in our assays, owing to our selec-
tion criteria, additional cCRE annotation assays, marks or tools that
were not used, technicalissues of the biochemical assays used to select
sequences and other factors.

Wetested all 19,104 known promoters of protein-coding genesinboth
orientationsin HepG2 and K562 cellsand 7,500 in WTCl1 cells. In addi-
tionto observing promoter activity strand-orientationbias in line with
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testusingthe2 x 2 contingency tables provided in Supplementary Table 9).

b, Saturation mutagenesis data from the PKLR enhancer*®. Top, the reference
sequencescaled to the mean effect sizeamongall alternative mutations,
annotated by 6 out of 8 significant TFBSs that match known motifs**. Middle,
measured effect sizes of individual variants. Bottom, MPRALegNet predictions
with corresponding Pearson (r) and Spearman (p) correlation values.

previous studies??®, we extensively characterized the sequence-based
information needed to generate these on/off switches. We found that
200-bp blocks centred at the TSS have sufficient sequence datato pro-
vide this switchand are sufficient to drive expressionin asimilar manner
to their associated gene. Sequencing of these active core promoters
shows that they are enriched for CpG-rich motifs that are known to
have ubiquitous function? (Extended DataFig.4a). They alsoinclude
the KLF-related transcription factor family that are known to interact
with the transcriptioninitiation complex and additional transcription
factors that provide ubiquitous promoter activity**and the ETS-related
family whichis enriched in ubiquitously expressed promoters*’. We also
observed an enrichment for the NF-Y family that is known to interact
with the CCAAT box and TATA-less eukaryotic promoters®’. Of note,
our lentiMPRA design tested promoters together with a minimal pro-
moter thatis 32 bp long, which could affect promoter activity. However,
thisapproach enabled us to test hundreds of thousands of enhancers
and thousands of promoters and compare them in the same assay.
Our results were similar to previous reports??, showing orientation
biases for promoters and motif enrichment that is known to provide
ubiquitous promoter expression, supporting the idea that the addi-
tion of this 32-bp sequence to our assayed promoters probably did
not affect our findings.

Inline with previous work'®**!, we show that sequence-based models
provide superior ability to predict functional sequences from MPRA.
MPRALegNet enabled us to tease out many motifs that areimportant for
these predictions, both universal and cell-type specific, and model their
combinatorial effects. Of note, one of the main enriched transcription
factor motifsamongthe promotersand enhancersinall three cell types
arethestripe KLF-related transcription factors. Stripe transcription fac-
torsare thoughtto provide co-accessibility and increase residence time
for other transcription-associated factors in promoters and enhancers®
and were also found to be enriched in active regulatory elementsin a
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Fig.5|Assessment of cCRE cell-type-specificactivity. a, Composition of the
jointlibrary testedinall three cells. b, Detection of active elementsin K562 cells
lacking DNase signal. We evaluated the DNase signal for the subset of elements
withlow K562 DNase accessibility (Ieft of vertical red line, indicated by red
bracket) inthe other two cell types and then quantified asmoothed kernel
density estimate of MPRA activity in K562 cells. ¢, Principal components analysis
biplotindicating the second (PC2) and third (PC3) principal components, with
arandomsample of upto1,000 data points fromeach element category plotted.
Theloading vectors (corresponding to each cell type) as well as ellipses fitting

recentlarge-scale lentiMPRA", in line with their generalizable function.
Although MPRALegNet was trained on three cell types, the similar per-
formance of cell-type-agnostic models and cell-type-specific modelsin
thevariant effect prediction task® and observation of similar measured
effectsizes of the same variantsin multiple cell types* supportits use
in additional cell types. Although MPRALegNet only performs com-
petitively with Enformer, its roughly 200-fold reduction of paramet-
ric complexity from Enformer’s approximately 249 million to around

theregions of highest density for each element category are also shown.

d, Violin plots showing the distribution of element specificity scores for each
element category, alongside information about which distributions showa
median significantly greater than zero (one-sided Wilcoxon signed-rank test,
*P<0.05).Inner boxplots are plotted as described for Fig. 3f,h. e, Performance of
trained MPRANn, MPRALegNet, SeiMPRA and EnformerMPRA models on each
often cross-validation folds of held-out data, relative to the corresponding
performance oflasso regression models trained on biochemical features, with
improvementrelative to another model evaluated with aone-sided, paired t-test.

1.3 million parameters provide acomputationally efficient and practi-
cal way to rapidly predict variant effects on a genome-wide scale. We
discuss several limitations of this work in Supplementary Discussion.

Insummary, our work provides alarge catalogue of functional regula-
tory elementsin three established cell lines accompanied by machine
learning-based tools that provide a valuable resource for prediction of
regulatory activity. We provide systematic support for the following
generalizations about mammalian regulatory elements: (1) enhancer
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activity is largely independent of orientation, in line with the original
definition of enhancers®; (2) enhancers have more inherent cell-type
specificity than promoters; and (3) cell-type specificity is driven by
a small number of cell-type-specific TFBSs. These datasets will also
improve our understanding of the regulatory code, variant effects and
regulatory element design for therapeutic delivery.
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Methods

Design of Agilent oligonucleotide library

HepG2 pilot library. For the HepG2 pilot library, we collected two
replicates of DNase | hypersensitivity data derived from HepG2 cells
(ENCODE narrowPeak BED files: ENCFF505SRS and ENCFF268DTI, hg19
humangenome build)®. For each replicate, we collapsed overlapping
peaks using bedtools merge (parameters “-o collapse-c 2,3,7”). Then,
weidentified peaksthatintersected between the tworeplicates, merged
these peaks, and removed the subset of merged peaks that overlap
promoters (defined as regions +2,500 nt around any annotated TSS).
Theresulting distribution of peak sizes was such that 97% of peaks were
<200 bpinlength. We therefore centred the designed oligonucleo-
tides at each merged DNase peak, consistent with the known region
of maximal regulatory activity'®, and added +100 bp to either side.
This procedure resulted in aset of 66,017 cCREs. For this pilot library,
we sought to evaluate cCREs which overlapped a wide range of puta-
tive transcription factor binding sites. We therefore intersected these
potential enhancers with wgEncodeRegTfbsClusteredWithCellsV3.
bed.gz’® in order to count the number of putative HepG2 transcrip-
tion factor binding sites intersecting these cCREs. We uniformly and
randomly sampled ~1,834 cCREs with 0-1,1-5, 5-10,10-20, and >20
TFBSs for atotal of 9,172 elements. Including 50 positive and 50 nega-
tive controls from each of two previous studies'®” resulted in a total of
9,372 elements. These 171-bp controls from previous work were linked
downstream of a 29-nt random sequence GGTGCTCGATTTAATTTCG
CCGACGTGAT to matchthe 200-bp sequence length of cCREs. For the
final oligonucleotide library, each element was linked to the 5’ adaptor
AGGACCGGATCAACT and 3’ adaptor CATTGCGTGAACCGA, designing
two 230-bp oligonucleotides per element to minimize the impact of
oligonucleotide synthesis errors.

K562 pilot library. An analogous procedure was followed for the
K562 pilot library as in ‘HepG2 pilot library’, with the following
modifications: (1) ENCODE narrowPeak BED files ENCFFO27HKR and
ENCFF154JCN (hg38 human genome build)* were used; (2) merging
these peaksresultedin 34,367 potential enhancers; (3) after intersect-
ing the peaks with K562 transcription factor binding sites, we sampled
~1,278 enhancers from each transcription factor binding site bin to
test a total of 6,394 cCREs; (4) 250 additional negative controls were
chosen by dinucleotide shuffling 250 random potential enhancers
possessing 1-5 TFBSs; (5) positive and negative controls were chosen
from CRISPRi screens??, aprevious MPRA®, and select loci of interest
suchas a-globinand -globin; (6) atotal of 7,500 elements were tested;
and (7) controls were already 200 bp inlength, requiring no addition
of arandom sequence.

HepG2 large-scale library. Following the procedures outlined in
‘HepG2 pilotlibrary’, we tested all 66,017 previously identified cCREs
in both orientations. For human protein-coding gene promoters,
we extracted the average signal across cell types in TPM for each
CAGE peak listed in hgl9.cage_peak_phaseland2combined_tpm_ann.
osc.txt.gz from the FANTOMS consortium’”, The first exons of all
protein-coding gene transcripts were collected from Ensembl v.83
(hg38 genome build)*, transformed into hg19 coordinates using
liftOver®®, and then intersected with the CAGE peaks to identify a
single promoter per gene corresponding to the promoter with the
maximal average TPM. To select the final 200-bp oligonucleotide
for testing, we identified the centre of the promoter DNase peak on
the basis of the HepG2 DNase peaks merged across replicates (de-
scribed in ‘HepG2 pilot library’). In the scenario in which no DNase
peak overlapped the promoter, we centred on the midpoint of the
CAGE peak. In the scenario in which neither a DNase nor CAGE peak
existed, we centred on the TSS defined by the Ensembl annotation.
This resulted in a total of 19,104 protein-coding gene promoters, of

which 6,181 were centred on a DNase peak, 9,735 were centred on a
CAGE peak and 3,188 were centred on a Ensembl TSS definition. The
oligonucleotide tested included the +100-bp window around this
central position in the sense orientation with respect to the gene. A
random subset of 12,411 promoters were also tested in the antisense
orientation. We tested 102 positive and 102 negative controls froma
previous study" as well as 175 dinucleotide shuffled negative controls
inboth orientations. These shuffled controls were derived from shuf-
fling arandom subset of 175 DNase peaks. This resulted in a library
consisting 0f 164,307 elements, for which we ordered one 230-bp
oligonucleotide per element.

K562 large-scale library. To acquire a set of DNase peaks for testing,
we used the ‘optimal peak’ calls derived from processing ENCODE ex-
periment ID: ENCSROOOEOQY through the ENCODE DCC Irreproduc-
ible Discovery Rate (IDR) pipeline, available at https://github.com/
ENCODE-DCC/atac-seq-pipeline (generously provided by A. Kundaje).
Removing DNase peaks overlapping human promoters resulted in
87,618 potential enhancerstested in both orientations. The promoters
tested wereidentical tothose described in ‘HepG2 large-scalelibrary’,
except that itincluded all 19,104 promoters tested in both orienta-
tions. We tested 50 positive and 200 negative controls from a previous
MPRA study'® as well as the same 250 dinucleotide shuffled negative
controls as tested in ‘K562 pilot library’. Finally, 14,918 tiles not over-
lapping DNase peaks, and subsampled from the +1 Mb region around
the following 7 genetic loci: GATAI, MYC, HBE1, LMO2, RBM38, HBA2,
and BCL11A, were chosen using our representative subset selection
approach (described in the ‘Representative subset selection’ section
below) and tested in both orientations. This resulted in alibrary con-
sisting of 243,780 elements, for which we ordered one 230-bp oligo-
nucleotide per element.

WTC11large-scale library. To acquire a set of DNase peaks for testing,
we used the peak calls derived from applying the hotspot2 pipeline
(https://github.com/Altius/hotspot2) at FDR = 0.05 to ENCODE ex-
periment ID: ENCSR785ZUI (generously provided by R.Sandstrom)®..
Thisresultedintwoindependent replicates, whichwere mergedintoa
unified set using the procedures described in‘HepG2 pilot library’. Re-
moving DNase peaks overlapping human promotersresultedin 83,201
potential enhancers. Together with the 19,104 promoters described in
‘HepG2 large-scale library’, these elements were subsampled to select
30,121 potential enhancers and 7,500 promoters using our representa-
tive subset selection approach described below, and tested in both
orientations. We also tested 100 positive and 100 negative controls
from a previous study®* as well as 100 dinucleotide shuffled negative
controls, which were derived from shuffling 100 random sequences
from our set of 30,121 potential enhancers. This resulted in alibrary
consisting of 75,542 cCREs, for which we ordered one 230-bp oligonu-
cleotide per element.

Joint library tested in HepG2, K562, and WTC11 cells. Given the
measured potential enhancers from the forward orientations in each
oftheHepG2, K562 and WTCl1large-scale libraries, we binned each set
of cCREs into ten equally sized bins spanning the range of measured
log,(RNA/DNA) valuesinthe selected cell type. We randomly sampled
an approximately equal number from each bin, resulting in 19,000
HepG2, 18,958 K562 and 18,946 WTC11 potential enhancers. A similar
procedure was followed with sense-oriented promoters, except that
the ten bins were established on the basis of the mean log,(RNA/DNA)
acrossallthree cell types (thatis, instead of performing the procedure
independentlyineach celltype asbefore), and the top 1,000 promoters
exhibiting the greatest variance across three cell lines were also selected
for testing. This resulted in the selection of 2,396 out 0f 19,104 promot-
ers. We also tested 181 positive and 169 negative HepG2 controls from
a previous study’, 50 positive K562 controls from a previous study’®,
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and 300 dinucleotide shuffled negative controls. The shuffled controls
originated from selecting 100 shuffled controls fromeach of the three
cell types. This resulted in a library consisting of 60,000 cCREs, for
which we ordered one 230-bp oligonucleotide per element.

Representative subset selection. Given the limited number of testable
elements in the large-scale K562 and WTCl1 libraries, we designed a
subset selection procedure to more optimally sample anon-redundant
subset of elements associated with diverse biochemical features. For
K562 cells, we used ground sets of non-overlapping 200-bp windows
uniformly covering each of 7 genetic loci; for WTC11 cells, we used
ground sets of 83,201 potential enhancers and 19,104 promoters. To
performrepresentative subset selection with these ground sets, we
utilized an objective function called facility location. This submodular
set function can be optimized using a greedy algorithm, and yields a
subset of elements that covers the epigenetic diversity of the ground
set®, The facility location function is given as:

fa=7y maxg(v, )

€
vey 4

where Vis the ground set, A is a subset of Vwith kelements and g is a
nonnegative similarity function. Optimization of the facility function
was performed using the Python package apricot (https://github.com/
jmschrei/apricot/)®. For this study, we set k = 2,231 for each of the 7loci
inK562 cells, k=30,121for WTCl11 potential enhancers,and k= 7,500 for
promotersin WTC11. Fromthe 7loci, we thenfiltered out the tiles that
overlapped DNase peaks asthey had already been tested, and then sub-
sampled to -2,131tiles per locus to retrieve 14,918 tiles among all loci.

To assess the pairwise similarity of each element, we utilized
hundreds of ENCODE histone and transcription factor ChIP-seq
experiments derived from K562 and WTC11-H1 embryonic stem cells
(Supplementary Table 6). For each 200-bp tile in the ground set, we
computed the mean signal for each ChlP-seq dataset, resulting in a
vector of biochemical measurements for each 200-bp tile. We used
the Pearson correlation coefficient as a similarity function given these
ChIP-seq features.

Generation of MPRA libraries

The MPRA libraries were generated as previously described™. In brief,
the Agilent oligonucleotide pool was amplified by 5-cycle PCR using
forward primer (pLSmP-enh-f, Supplementary Table 13) and reverse
primer (minP-enh-r, Supplementary Table 13) that adds a minimal
promoter and spacer sequences downstream of the cCRE. The ampli-
fied fragments were purified with 0.8x AMPure XP (Beckman coul-
ter), and amplified for 15 additional cycles using the forward primer
(pLSmP-enh-f) and reverse primer (pLSmP-bc-primer-r, Supplementary
Table 13) to add 15 bp of random sequence that serves as a barcode.
The amplified fragments were then inserted into Shfl/Agel site of the
pLS-Scel vector (Addgene, 137725) using NEBuilder HiFi DNA Assem-
bly mix (NEB), followed by transformation into 10-beta competent
cells (NEB, C3020) using the Gemini X2 machine (BTX). Colonies were
allowed to grow up overnight on carbenicillin plates and midiprepped
(Qiagen, 12945). For HepG2 and K562 pilot libraries, we collected
approximately 1 million and 1.3 million colonies, so that on average
50 and 100 barcodes were associated with each cCRE, respectively.
ForHepG2,K562and WTCl1 large-scalelibraries, we collected approxi-
mately 8 million, 12 million and 3 million colonies aiming to associate
approximately 50,50 and 40 barcodes per cCRE, respectively. For the
jointlibrary, we collected approximately 3.3 million colonies, aiming
to associate approximately 55 barcodes per cCRE. To determine the
sequences of therandombarcodes and their association toeach cCRE,
the cCRE-mP-barcodes fragment was amplified from each plasmid
library using primers that contain flowcell adapters (P7-pLSmP-ass-gfp
and P5-pLSmP-ass-i17, Supplementary Table 13). The fragment was

thensequenced withaNextSeq mid-output300 cycle kit using custom
primers (Read 1, pLSmP-ass-seq-R1; Index read, pLSmP-ass-seq-ind1;
Read 2, pLSmP-ass-seq-R2, Supplementary Table 13).

Cell culture, lentivirus packaging and titration

HepG2 (ATCC, HB-8065) and K562 (ATCC, CCL-243) cell culture
were performed as previously described'*. WTC11 human iPS cells
(RRID:CVCL_Y803) were cultured in mTeSR plus medium (Stemcell
technologies, 100-0276) and passaged using ReLeSR (Stemcell tech-
nologies, 100-0484), according to the manufacturer’s instructions.
WTCI11 cells were used for the MPRA experiments at passage 43-49.
Cells were not authenticated or checked for mycoplasma contamina-
tion. Lentivirus packaging was performed using HEK293T (ATCC, CRL-
3216), as previously described with modifications®. In brief, 50,000
cells per cm* HEK293T cells were seeded in T175 flasks and cultured
for 48 h. The cells were co-transfected with 7.5 pg per flask of plasmid
libraries, 2.5 pg per flask of pMD2.G (Addgene 12259), and 5 pg per
flask of psPAX2 (Addgene 12260) using EndoFectin Lenti transfection
reagent (GeneCopoeia) according to the manufacturer’s instructions.
After 8 h, cell culture media was refreshed and ViralBoost reagent
(Alstem) was added. The transfected cells were cultured for 2 days to
complete lentivirus packaging. The lentivirus libraries in the culture
mediawere separated from the HEK293T cells and concentrated using
the Lenti-X concentrator (Takara) according to the manufacturer’s
protocol. To measure DNA titre for the lentiviral libraries in HepG2,
K562, or WTC11, cells were seeded at 1 x 10° cells per well in 24-well
plates and incubated for 24 h. Serial volume (0, 2, 4, 8,16 and 32 pl)
of the lentivirus was added along with Polybrene at a final concentra-
tion of 8 pg ml™. The infected cells were cultured for three days and
then washed with PBS three times. Genomic DNA was extracted using
the Wizard SV genomic DNA purification kit (Promega). Multiplic-
ity of infection (MOI) was measured as relative amount of viral DNA
(WPRE region, forward; 5-TACGCTGCTTTAATGCCTTTG-3’, reverse;
5’-GGGCCACAACTCCTCATAAAG-3’) over that of genomic DNA (intronic
region of LIPC gene, forward; 5-TCCTCCGGAGTTATTCTTGGCA-3’,
reverse; 5'-CCCCCCATCTGATCTGTTTCAC-3’) by quantitative PCR
using SsoFast EvaGreen Supermix (Bio-Rad), according to the manu-
facturer’s protocol.

Lentiviral infections and DNA and RNA barcode sequencing

Forthe HepG2 and K562 pilot libraries, 2.4 MHepG2 or 10 MK562 cells
per replicate were seeded in 10 cm dishes or T75 flasks, respectively,
and incubated for 24 h. The HepG2 and K562 cells were infected with
thelentivirallibraries along with 8 ug ml™ Polybrene, with an estimated
MOl of 50 or 10, respectively. The higher MOlin HepG2is due to these
cellsbeing adherent compared to K562 that grow in suspension. For the
large-scale HepG2 library, 15 M HepG2 cells per replicate were seeded
in3x15 cmdishes (5million per dish), incubated for 24 h, and infected
withthelibrary along with 8 pg mI™ Polybrene, with an estimated MOI
of 50. For the large-scale K562 library, 85 million K562 cells per replicate
were seededin3 T225flasks (28.3 M per flask), incubated for 24 h, and
infected with the library along with 8 pg mI™ Polybrene, with an esti-
mated MOl of 10. For the large-scale WTCl11library, 38.4 million WTCI11
cells per replicate were seeded in four 10 cm dishes (9.6 M per dish),
incubated for 24 h, and infected with the library along with 8 ug ml™
Polybrene, withan estimated MOI of 10, due to higher MOls being lethal
forthese cells. For thejoint library, 5million HepG2, 28 million K562 and
38.4 million WTCl1 cells were infected with the estimated MOl of 50, 10
and 10, respectively. For each experiment, threeindependent infections
were performed to obtain three biological replicates. After three days of
culture, genomic DNA and total RNA were extracted from the infected
cellsusing AllPrep DNA/RNA mini kit (Qiagen), and sequencinglibrary
preparations were performed as previously described". The libraries
were then sequenced with a NextSeq high-output 75 cycle kit using
custom primers (Read 1, pLSmP-5bc-seq-R1; Index1 (unique molecular
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idenitifier (UMI) read), pLSmP-UMI-seq; Index2, pLSmP-5bc-seq-R2;
Read 2, pLSmP-bc-seq; Supplementary Table 13)*.

MPRA processing pipeline

Associating barcodes to designed elements. For each of the bar-
code association libraries, we generated FASTQ files with bcl2fastq
v.2.20 (parameters “--no-lane-splitting --create-fastq-for-index-reads
--use-bases-mask Y*,I*,I*Y*”), splitting the sequencing data into
paired-end index files delineating the barcodes (I1 and 12) and
paired-end read files delineating the corresponding element linked
tothebarcode (RLand R2). These files were used to associated barcodes
to elements using the association utility of MPRAflow 1.0 (run as:
nextflow runassociation.nf--fastq-insert “R1.fastq.gz” --fastq-insertPE
“R2.fastq.gz” --fastq-bc “I1.fastq.gz” --fastq-bcPE “I12.fastq.gz” --aligner
“bt2_strand” --design “designed_sequences.fa”). Here, designed_se-
quences.fawasaFASTAfileincorporatingall of the element sequences
that had been ordered from the corresponding Agilent library, and
bt2_strand was used to map elements in a strand-aware fashion to ac-
commodate the existence of elements tested in both orientations. The
final output of this utility was afiltered_coords_to_barcodes.pickle file
mapping barcodes to elements.

Replicates, normalization and RNA/DNA activity scores. For
each of the indexed DNA and RNA libraries, we demultiplexed
the sequencing run and generated Fastq files with bcl2fastq
v.2.20 (parameters “--barcode-mismatches 2 --sample-sheet
SampleSheet.csv --use-bases-mask Y*Y*,I*,Y* --no-lane-splitting
--minimum-trimmed-read-length O --mask-short-adapter-reads 0”),
where SampleSheet.csv catalogued the correspondence between the
index sequence and DNA or RNA replicate sample of origin. In several
instances, the “--barcode-mismatches 2” resulted in an index assign-
ment clash, requiring us to instead use “--barcode-mismatches1”. These
commands split the sequencing data into paired-end read files delin-
eating the barcodes (R1 and R3) and a file indicating the UMI (R2) for
each DNA or RNA replicate sample. We compiled a table of these files
to indicate the 3 RNA and 3 DNA files for each of the three replicates
in the file experiment.csv. Finally, we used the count utility of MPRA-
flow 1.0 (run as: nextflow run count.nf --e “experiment.csv” --design
“designed_sequences.fa” --association “filtered_coords_to_barcodes.
pickle”) to compute activity scores for each element and replicate as
log,(RNA/DNA). Elements with which were measured with fewer than10
independent barcodes were removed to reduce theimpact of measure-
mentnoise in downstream analysis. This filter led to the following num-
ber of retained elements: (1) HepG2 pilot library, 9,153/9,372 (97.7%);
(2) K562 pilotlibrary, 7,323/7,500 (97.6%); (3) HepG2 large-scale library,
139,886/164,307 (85.1%); (4) K562 large-scalelibrary, 226,255/243,780
(92.8%); (5) WTCI1 large-scale library, 56,093/75,542 (74.2%); (6)
HepG2 joint library, 56,018/60,000 (93.4%); (7) K562 joint library,
56,008/60,000 (93.3%); and (8) WTC11 joint library, 55,983/60,000
(93.3%). To combine the datafrom all three replicates, the distribution
of activity values was normalized to the median activity value within
eachreplicate, and then the activity values were averaged across the
threereplicates.

Regression modelling

Biochemical model features. We extracted all transcription factor
ChIP-seq, histone ChIP-seq, DNase-seq, and ATAC-seq bigWig files
available for HepG2,K562,and WTCl1 cells for the hg38 human genome
assembly under ‘released’ ENCODE status*®. To account for the lack of
WTCl1dataavailable, we also collected all such datasets for HI-ESCs for
inclusioninthe predictive model. This resulted in 1,506 bigWig files for
HepG2 cells; 1,206 files for K562 cells; and 277 files for WTC11/H1-ESCs
(Supplementary Table 6). For each candidate element aside from con-
trols, we computed the mean bigWig signal extracted from the corre-
sponding region of the human genome using bigWigAverageOverBed®°.

All datawas right-skewed, and was therefore log-transformed (that s,
after adding a pseudocount of 0.1) to approximate a normal distribu-
tion. Finally, for each cell type, multiple replicates corresponding to
the same ‘experiment target’ (Supplementary Table 6) were averaged
to compute the consensus signal for each targetin each cell type. This
led to atotal of 655 HepG2 features, 447 K562 featuresand 122 WTC11/
H1-ESC features considered by the models.

Sei and EnformerMPRA model features. For the large-scalelibraries,
Sei*” and Enformer® were used to predict element activity in both ori-
entations (thatis, including adaptorsinafixed orientation to simulate
the MPRA experiment). The resulting 21,907 Sei and 5,313 Enformer
predictions for each of the two orientations were averaged. For the
joint library, Sei and Enformer were used to predict element activ-
ity in only the forward/sense orientation, and the resulting human
predictions were carried forward as features. As Sei requires aninput
sequence length of 4,000 bp and Enformer requires one 0f196,608 bp,
all elements were extended with “N” padding in both directions while
centring on the element sequence.

Data pre-processing and model training. For each of the three
large-scale libraries, the log,(RNA/DNA) scores for each element
were averaged among both orientations in which the element was
tested, and then randomly assigned to one of ten cross-validation
folds (Supplementary Table 8). All predictive features (that is, bio-
chemical features from the matched cell type, or all Enformer features)
were z-score-normalized to scale the features similarly. This enabled
adirect comparison of coefficients among features derived from the
resulting linear models. As described before'®**?, for each regres-
sion task we optimized the A regularization hyperparameter using
tenfold cross-validation, and then used the optimal value for A to train
10 lassoregressionmodels, each on9 of the 10 folds of data, to evaluate
the performance of each model on the held-out fold. To evaluate the
most relevant features selected, we trained a lasso regression model
onthe full dataset and visualized the 30 coefficients with the greatest
magnitude. A similar strategy was used for data from the joint library
testedinallthree cell types, ensuring that the same element measured
in different cell types was always assigned to the same fold (Supple-
mentary Table12).

Training MPRALegNet. The LegNet architecture® was adapted
to the training data in the following ways: (1) to account for longer
sequences but smaller training set size compared to the original Leg-
Net, we added max poolinglayers after each local block; (2) the kernel
size and number of blocks were selected to match the model’s recep-
tivefield to the sequence length; (3) weight decay during training was
increased to prevent model overfitting; (4) gradient clipping was used
to avoid gradient explosion during the one-cycle learning rate policy
(see Supplementary Methods for more details). For the training-time
augmentation, each sequence was provided twice, bothin the forward
andreverse complement orientations, along with their corresponding
measured element activity scores. At test time, the model predicted
fourscores: (1) the scores for the forward and reverse element orienta-
tions relative to the fixed flanking (adaptor) regions; and (2) as a further
augmentation, the scores for the full reverse complement sequences
(that is, obtaining the reverse complementary sequence of the ele-
mentand adaptor regions together) fromstep (1). The final prediction
represented an average of these four values. The reproducible code,
including implementation and complete parameter settings, is avail-
able on GitHub (https://github.com/autosome-ru/human_legnet) and
Zenodo (https://zenodo.org/records/10558183 and https://zenodo.org/
records/13908857).

Interpreting motifs identified by MPRALegNet. As a step towards
motif interpretation, ISM was performed for all possible single
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nucleotide variants on each 200-bp sequence. Owing to the nature
of our cross-validation strategy, for each sequence there were nine
models for which the sequence was held out during training. ISM scores
were generated for every sequence by averaging the predictions from
these nine models. The average reference sequence prediction was
then compared with that of the alternative sequence®. We then inter-
rogated our ISM scores to identify the most pertinent motifs associ-
ated with changes in variant activity using TF-MoDISco-lite v.2.0.4
(https://github.com/jmschrei/tfmodisco-lite), amore efficient version
of TF-MoDISco. The TF-MoDISco-lite algorithm was used with default
settings and similar seqlet patterns were matched against JASPAR 2022
CORE vertebrate non-redundant database®* using Tomtom®.

Modelling dose-dependent and combinatorial motif effects learned
by MPRALegNet. A non-redundant set of positional weight matrices
(PWMs) from each cell type, as ranked by TF-MoDISco-lite (Extended
DataFig. 6), were extracted and scanned (using FIMO 5.5.4%, parameters
“--text --thresh 0.001”) along each promoter and potential enhancer
that was tested bidirectionally. The motif scans were summarized into
amatrix of counts for each transcription factor and element tested,
aswell aslog-likelihood (sum of the log(probabilities)), reflecting the
likelihood of a given transcription factor binding the element while
consideringall TFBS instancesinboth orientations and their respective
binding affinities. We then performed an analysis of homotypic (that
is, dose-dependent effects for a single transcription factor) as well as
heterotypic (thatis, combinatorial effects among pairs of transcription
factors) for thetop 10 activating transcription factors of each cell type.

For homotypic analysis, we plotted the median element activity (that
is, both predicted and observed) for elements possessing 0,1, 2, 3, 4,
or 5 motifs, filtering away elements with >1 site to any of the other top
10transcription factorsto reduce the chances of aconfounding effect.
Groups with a sample size of <10 were also filtered out to minimize
the impact of noise. The expected dose-dependent responses (for
example, dashed linesin Fig. 3f) were computed using linear regression
models examining the relationship between either the observed or
MPRALegNet-predicted MPRA activity and the number of TFBSs, given
log-transformed and untransformed space to model either multiplica-
tive or additive effects, respectively. The expected trend for multiple
sites was extrapolated on the basis of the slope and intercept terms of
these linear models.

For heterotypic analysis, we evaluated every pair of the 10 activat-
ing motif's, isolating cases in which the element possessed O counts
of both transcription factors, 1 count of one transcription factor or
the other, or 1count each of the first and second transcription factor.
Again, allelements were filtered to those with >1 site to any of the other
top 10 transcription factors other than the transcription factor pair
considered. To further account for confounding effects that could be
attributable to all other transcription factors (that is, including those
beyond the top 10), we computed the residuals from a linear model
which considered the log-likelihood values for all other transcription
factors besides the pair of transcription factors under consideration.
We call these ‘adjusted log,(RNA/DNA)’ (for example, y axis in Fig. 3h)
because they removed variability explained by the binding affinities and
occurrences of other transcription factors. Finally, a regression model
was fit independently to the predicted and observed activity scores.
This model sought to predict activity as a function of the presence
of TF1, TF2 or an interaction term (TF1 x TF2). The coefficient for the
interaction termrepresented the strength of the super-multiplicative
effect (thatis, ifthe coefficient was positive) or the sub-multiplicative
effect (thatis, if the coefficient was negative)**,

Prediction using MPRALegNet. To generate predictions on an ar-
bitrary sequence, we recommend generating predictions using all
90 pretrained models (considering test-time sequence augmenta-
tions such as orientation and shifting for extra precision), and then

averaging the predictions to achieve the final prediction. We recom-
mend replacing the fixed 15-bp adaptors with the surrounding natural
genomic sequence context whenever available, toreduce the chances
thatartefactual motifs occurring at the adaptor-sequence boundaries
could bias the results.

Calculation of element specificity scores. To compute element speci-
ficity scores (ESSs) using activity scores fromthejointlibrary, log,(RNA/
DNA) values from each cell line were first z-score-transformed. Then
an ESS for each element was computed by subtracting the element’s
score in each cell type by the mean element score across cell types. A
full table of ESSs is provided (Supplementary Table 10).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw sequencing data and processed files generated in this study
are available in the ENCODE portal for the pilot libraries (HepG2:
ENCSR463IRX; K562: ENCSR460LZI), large-scale libraries (HepG2:
ENCSR022GQD; K562: ENCSR382BVV; WTC11: ENCSR244FWB), and
jointlibraries (HepG2: ENCSR405QCT; K562: ENCSR203UFY; WTCI1:
ENCSR336MKI).

Code availability

Code to train and interpret MPRAnn and MPRALegNet is available at
https://github.com/visze/sequence_cnn_models and https://github.
com/autosome-ru/human_legnet. Pretrained models and code have
alsobeendeposited at Zenodo (https://zenodo.org/records/10558183
(ref. 67) and https://zenodo.org/records/13908857 (ref. 68)).
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Extended DataFig.1| A next-generation lentiviral massively parallel
reporter assay (lentiMPRA) strategy to measure the transcriptional
regulatory activity of > 6,000-240,000 enhancers simultaneously.
a,Designed 230nt oligos corresponding to thousands of cCREs are synthesized
onanAgilentarray. The 1st round of PCR adds on aminimal promoter, while
the2nd round of PCR adds random barcodes to these sequences. Thelibrary
isthenclonedintoapLS-Scel vector harboring an EGFP reporter to generate
thefinalelementlibrary.b, The element-barcode fragments within the library
areamplified by PCRand sequenced using an Illumina NextSeqinstrument.
This enablesreconstruction of element-barcode pairings. ¢, The element
libraryis packaged intolentiviruses and transduced into HepG2, K562, or
WTCll1cellsinaseries of threereplicates. Cellsare grownin cultured medium
for three days prior to the harvesting of RNA and DNA. Each RNA and DNA

sample fromeachreplicateis extracted, and barcodes are sequenced onan
Illumina NextSeqinstrument. Finally, DNA and RNA-derived barcodes are
counted tocompute anormalized activity score for each elementin each
replicate.d, UCSC genome browser tracks annotating, from top to bottom:

i) Lead single nucleotide polymorphisms (SNPs) from published Genome-wide
Association Studies (GWAS); ii) Common SNPs from the 1000 Genomes Phase 3
dataset;iii) GENCODE gene track; iv) MPRA activity scores from the pilot K562
MPRA library for each of the five enhancers tested, with stronger red indicative
of higheractivity; v) MPRA scores corresponding to the large-scale K562 MPRA
library, tested in both orientations; vi) H3K27Ac; vii) DNase l hypersensitivity
signalin K562 cells; viii) base conservation among 100 vertebrate species; and
ix) the five enhancers (HS1-HSS5) of the globinlocus tested in the pilot and large-
scaleK562 MPRA libraries.Image of DNA sequencer created with BioRender.com.
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Extended DataFig.2| MPRA activity inselected disease loci. a-f, UCSC higher activity; v) MPRA scores corresponding to the large-scale K562 MPRA

genome browser tracks annotating, fromtop to bottom: i) Lead single library, tested in both orientations; vi) H3K27Ac and vii) DNase | hypersensitivity
nucleotide polymorphisms (SNPs) from published Genome-wide Association signalin K562 cells; viii) base conservation among 100 vertebrate species.
Studies (GWAS); ii) Common SNPs from the 1000 Genomes Phase 3 dataset; Snapshots provided for BCL11A (a), GATAI (b), and HBA2 (c). Additional lociare
iii) GENCODE gene track; iv) MPRA activity scores from the pilot K562 MPRA showninSupplementary Fig. 3.

library foreach of the five enhancers tested, with stronger red indicative of
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Extended DataFig.3 | Properties of promoteractivity in three cell types.
a-b, Scatter plots of activity scores for sense-oriented promoters tested in the
MPRA and endogenous gene expression levels for (a) K562 and (b) WTCl1 cells.
Expression levels follow abimodal distribution. Alsoindicated are the Pearson (r)
and Spearman (rho) correlation values. ¢, Upper triangular heatmap indicating
the correlation between the sense (s) and antisense (as) orientations of
promoters tested in the MPRA as well as endogenous gene expression levels
measured intranscripts per million (TPM) using RNA-seq, filtered for the set

of genes with detectable expression (i.e., >0 TPM). The sizes of thecircles are
proportional to the Pearson correlations. d, Alternative representation of the
datashowninFig.2d and panel (c), showing the Pearson correlation between

each pair of measurementsindicated below the horizontal line. Black points
representallgenes (i.e., akin to Fig. 2d) and red points represent the expressed
subset of genes[i.e., akin to panel (c)]. e-g, Scatter plots of activity scores

for sense-oriented promoters tested in the MPRA and endogenous gene
expression levels for (e) HepG2, (f) K562, and (g) WTCl1 cells, filtered for
thesetof genes with detectable expression (i.e., > 0 TPM). h-j, Scatter plots

of activity scores for sense-oriented promoters tested inthe MPRA and
endogenous gene expression levels for HepG2 (h), K562 (i), and WTC11 (j) cells,
as measured by CAGE-seq signal*®in the precise promoter tested. Due to lack
ofavailability of processed CAGE-seq for WTC11, we instead used H1-ESCs,
atranscriptionally similar embryonic stem cell line.
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Extended DataFig.4|Enriched motifsdetectedinthree celltypes.a-b, Set evaluated, and matched against theJASPAR 2022 CORE vertebrate non-
of motifs enriched in the top 1,000 most active vs. bottom 1,000 least active redundant database®* using Tomtom® (i.e., other than the set of CpG-rich motifs).
promoters (a) or potential enhancers (b) (i.e., as measured by large-scale Motifs above the horizontal linein each panelare those associated with gene

MPRAs). Motifs were discovered by STREME® for each of the three cell types activation, while motifs below theline are those associated with repression.
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Extended DataFig. 5|Architecture and performance of MPRALegNet.

a, Violin plots showing the performances of different variations of MPRALegNet
oneach of the ten cross-validation folds of held-out data, for different types
ofaugmentations. “-” and “+” indicate removal or usage, respectively, of the
following augmentations: i) “test-time”, whereby the mean prediction s
computed for various augmentations of the test sequence; ii) “shift”, whereby
asequence was randomly shifted by 0 to +21 bp; iii) “RevComp”, whereby a
sequence was randomly reverse complemented;iv) “Orientation”, whereby
measured elementactivity scores were considered for each orientation tested,
instead of the mean across both orientations; and v) “5th channel”, whereby a

5th channelwas considered alongside the one-hot encoded sequence (i.e., the
first4 channels) toindicate the sequence’s orientation.b, Complete architecture
ofthe MPRALegNet model. Indicated for each layer is the layer name and
dimensionality of the input and output matrices. ‘None’ refers to the batch
size used during model training. ¢, Impact of the size of the training set on
model performance. Datafromeach celltype were downsampled to every
10th percentile (i.e., from10 to100%). Error bars represent the standard
deviation of the Pearson correlations across 90 models (10 held-out folds

of datax 9 trained models varying by the choice of validation set).
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Extended DataFig. 6 | Motifs detected by MPRALegNet. Set of enriched
motifs discovered by TF-MoDISco-lite* for each of the three cell types
evaluated. Motifs shown are rank-ordered according to their “seqlet”*® count.

TFBSsassociated with transcriptionalinhibition (e.g., REST) are oriented
upside down and shown below the horizontal lines. TFBSs detected in at least
two cell types (i.e., likely bound to housekeeping TFs) are shownin bold.
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Extended DataFig.7 | Combinatorial TFBS effectslearned by MPRALegNet.
a, Effect of TF knockdown onloss of regulatory element activity, froma
reanalysis of a prior MPRA*®. Shown are cumulative density plots for the subset
ofelements possessing TF binding sites to the corresponding knocked down
TF, relative toacontrol (i.e., non-targeting guide RNA) shown in black. The x-axis
indicates the minimum (i.e., most negative) fold change among three guide
RNAstargeting the TF. Data shown is from the high MOl condition sampled at
day10*°. P-values indicate ashiftin the distribution as assessed by a one-sided
Kolmogorov-Smirnov (K-S) test, followed by aBonferroni multiple hypothesis
testing correction. b-e, These panelsare arranged in the same scheme as Fig. 3e,f,
exceptdisplay results forhomotypic TFBSsin HepG2 (b-c) and WTC11 (d-e) cells

for theindicated TF families. f, Scatter plot of interaction terms fit to predicted
and observed values for TFBS pairsin HepG2 cells. The datais the same as that
presentedinFig.3g, butalsoincludes Pearson (r) and Spearman (rho) correlation
values. g, This panelis similar to that shownin Fig. 3h, but shows an example
of apair of heterotypic TFBSs that exhibit a sub-multiplicative effect when
co-occurring. h-k, These panelsare arranged in the same scheme as Fig. 3g
and panel (f), except display results for K562 (h-i) and WTC11 (j-k) cells for the
indicated TF families. I, This panelis similar to that shownin Fig. 3h, but shows
an example of a pair of heterotypic TFBSs that exhibit a super-multiplicative
effect when co-occurringin WTCl11cells.



Article

a Scale 50 kb | hg38
chr20: | 57,400,000| 57,410,000] 57,420,000] 57,430,000| 57,440,000| 57,450,000| 57,460,000 57,470,000/ 57,480,000]
NHGRI-EBI Catalog of Published Genome-Wide Association Studies
rs117963839 | rs11905479| 16099612 rs80078371| 14810067 | 15328506 | rs6070116|  rs11700223|
5439749 rs11546711|  rs6014993| 1$1555272| rs13039273| rs7351513|
rs66888736| rs6014992| | rs376911010 rs328501 | rs61458527|
1559678704 rs12625774| |rs737092 rs8115156| |rs34161672 1s59972978|
rs328491| 1s2865376| | rs6123697
rs8125560 | | rs61547234
rs117621405| |rs35817974 |rs6092477
0.273349 _| MPRALegNet predicted effect (Ref-Alt) for SNPs in LD (R2 >= 0.8) with GWAS catalog lead SNP
Ref-Alt \
J . ) l ! \ o
-0.165522 _|
GENCODE V44
K562 pilot MPRA
K562 pilot |
K562 large-scale MPRA
K562 full [ 11
170.492 _ 7Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

Layered H3K27Ac
0.04

119.627 _
DNase Signal

Cons 100 Verts
05_

ENCODE cCREs

S T

—— e __A._‘_._ [ —
DNase | Hypersensitivity Signal Colored by Similarity from ENCODE
L

n -
100 vertebrates Basewise Conservation by PhyloP

ol .

ENCODE Candidate

Regulatory Elements (CCREs) combined from all cell types

1 kot | hg 500 bases| | hg3s
57,395,000 57,395,500] 57,396,000 | 57,415,100 57,415,200| 57,415,300| 57,415,400| 57,415,500 57,415,600| 57,415,700|
NHGRI-EBI Catalog of Published Genome-Wide Association Studies NHGRI-EBI Catalog of Published Genome-Wide Association Studies
158125560 15376911010 | rs737092
All Short Genetic Variants from dbSNP Release 155

All Short Genetic Variants from dbSNP Release 155

1555645265 C/T|

152426715 CIA/G/T|

0.273349 _,
Ref-Alt

-0.0341553 _

RBM38:

rs328493 A/G/T| rs73291901 C/G/T| rs530799940 G/A|  rs376911010 AIG/T|  |rs737092T/A/C rs59489325T/C|
1573291899 G/A| rs367955463 T/C| rs149163154 G/A| |rs534348784 CIAIT
rs2426714 GIAIC/T| rs74324013 CIAIT| 1$6099615 C/T| | rs187860493 CIT |rs143312396 T/C

rs8125560 A/C|

| rs192520122 G/T| rs910758 C/GIT|

1s6099616 T/C|

MPRALegNet predicted effect (Ref-Alt) for SNPs in LD (R2 >= 0.8) with GWAS catalog lead SNP

0.0890205 yMPRALegNet predicted effect (Ref-Alt) for SNPs in LD (R2 >= 0.8) with GWAS catalog lead SNI

-0.0734762
GENCODE V44

H
K562 fully

17.84

Layered H3K27Ac ]

H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

K562 large-scale MPRA K562 large-scale MPRA

H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE

e

012 _ P ]
oN Signal 2.57815 _ DNase | Hypersensitivity Signal Colored by Similarity from ENCODE H DNase | Hypersensitivity Signal Colored by Similarity from ENCODE
lase Signal 1}
0_,
1 100 vertebrates Basewise Conservation by PhyloP H 100 vertebrates Basewise Conservation by PhyloP
Cons 100 Verts H H
05!
ENCODE Candidate Cis-Regulatory Elements (cCREs) combined from all cell types ' ENCODE Candidate Cis-Regulatory Elements (cCREs) combined from all cell types
ENCODE cCREs} I 1
b Scale 50 kbt | hg38
chri1: | 33,840,000 33,850,000 33,860,000 33,870,000 33,880,000 33,890,000 33,900,000 33,910,000/ 33,920,000/ 33,930,000/ 33,940,000/ 33,950,000|
NHGRI-EBI Catalog of Published Genome-Wide Association Studies
rs11032423| rs3740617| rs34439695| rs11032440| |rs2273799
rs75395676|  rs3758641|
rs1885525| rs750781|
0.0203769 _| MPRALegNet predicted effect (Ref-Alt) for SNPs in LD (R2 >= 0.8) with GWAS catalog lead SNP
| 1 1 L :
Ref-Alt ! l ‘
-0.120551 _|
GENCODE V44
LMO2 B deeesffeeeeeeeetiereeeeeed
K562 pilot
K562 pilot | |
K562 full
K562 full LN v | |
387.127 _ H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE
Layered H3K27Ac HH
0.04 I R b, ] s, A " .A.M .
241.156 _| DNase | Hypersensitivity Signal Colored by Similarity from ENCODE
DNase Signal H 1
0 N . “ " 4 4
100 vertebr: Basewise Conservation by PhyloP
Cons 100 Verts
05_
ENCODE Candidate Cis-Regluiatory Elements (cCREs) combined from all cell types
ENCODE cCRESs | i HH L] [
Scale] 200 bases} | hg38 i
chri1y | 33,881,850 33,881,900/ 33,881,950 33,882,000 33,882,050 33,882,100 33,882,150 33,882,200 33,882,250/ 33,882,300/ 33,882,350 33882400 !
All Short Genetic Variants from dbSNP Release 155 i
1579853482 G/C| 1578364368 G/A| rs1885523 C/A/T|  rs4307693 C/A| H
rs184800840 A/G| 1575395676 C/T| r$1885524 C/G/T| H
0.0137431 _} MPRALegNet predicted effect (Ref-Alt) for SNPs in LD (R2 >= 0.8) with GWAS catalog lead SNP H
Ref-Alt - ' !
-0.120551 _| H
GENCODE V44 :
LMO: :
: K562 full H
K562 full} H
30.2 4 H3K27Ac Mark (Often Found Near Regulatory Elements) on 7 cell lines from ENCODE H
Layered H3K27Ac H
152 H
31.4535_} DNase | Hypersensitivity Signal Colored by Similarity from ENCODE B
DNase Signal ' H
4.64068 _ H
1.4 100 vertebrates Basewise Conservation by PhyloP H
Cons 100 Verts :
05

ENCODE cCREs!

ENCODE Candidate Cis-Regulatory Elements (cCREs) combined from all cell types

'

Extended DataFig. 8|See next page for caption.



Extended DataFig. 8| Variant effect predictionsinthe RBM38and LMO2
loci.a, UCSC genome browser snapshot of the RBM38locus, showing from top
tobottom:i) Lead SNPs from published GWAS:; ii) variant effect predictions
derived from MPRALegNet for LD variants with GWAS lead SNPs (R?> 0.8);

iii) MPRA activity scores from the pilot K562 MPRA library for each of the five
enhancerstested, withstronger red indicative of higher activity; iv) MPRA
scores corresponding to the large-scale K562 MPRA library, tested in both

orientations; v) H3K27Ac and vi) DNase L hypersensitivity signal in K562 cells;
vii) base conservation among 100 vertebrate species; viii) ENCODE cCRE track.
Thebottom panel shows two zoomed-inregions of theimplicated causal SNPs
(i.e.,expanded from the vertical dashed lines), several of which are located
withinaDNase Isite. b, This panel follows the same scheme, except displays
the LMO2locus and onezoomedinregionshowing theimplicated causal SNP
located within aDNaselsite having the strongest predicted effect size.
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Extended DataFig.9|See next page for caption.



Extended DataFig.9|Performance of MPRALegNetinsaturation
mutagenesis prediction task. a-c, Saturation mutagenesis datafromthe SORT1
enhancer (a), LDLR promoter (b), and F9 promoter (c)*. Shown in the top row
isthereference sequence scaled to the mean effect size among all alternative
mutations, annotated by significant TFBSs that match known motifs**. Measured
effect sizes ofindividual variants are displayed in the second row. The bottom

rowshows MPRALegNet predictions as well as corresponding Pearson (r) and
Spearman (rho) correlation values to the observed data.d, Scatter plots showing
thecorrelationbetween predicted genetic variant effects by MPRALegNet

and observed varianteffects, as detected in a saturation mutagenesis MPRA
experimenttesting the PKLR promoter, SORTI enhancer, LDLR promoter, and
F9promoter®.
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